Preview

Научно-практическая ревматология

Расширенный поиск

Ассоциация полиморфизма Т(861-20)С трансформирующего фактора роста (ТФР) р1 с минеральной плотностью кости и экспрессией гена ТФР р! при постменопаузальном остеопорозе

https://doi.org/10.14412/1995-4484-2012-1273

Полный текст:

Аннотация

Цель — исследовать механизмы участия полиморфизма Т(861-20)С гена трансформирующего фактора роста (ТФР) β1 в резорбции костной ткани при постменопаузальном остеопорозе (ОП). Материал и методы. Проанализировано 158 ДНК женщин в постменопаузе, больных ОП, и 89 ДНК здоровых женщин сопоставимого возраста в полимеразной цепной реакции (ПЦР) в ассоциации с анализом полиморфизма длины рестрикционных фрагментов (ПЦР-ПДРФ). Минеральную плотность костной ткани (МПКТ) оценивали посредством двухэнергетической рентгеновской адсорбциометрии. Активность щелочной фосфатазы и уровней кальция и фосфора в сыворотке определяли по стандартным биохимическим протоколам. Общую РНК выделяли из периферической крови 32 больных ОП и 39 здоровых доноров и использовали ее для исследования в ПЦР в режиме реального времени. Результаты. Не обнаружено значительных различий в частоте отдельных аллелей и генотипов между группой больных ОП и контрольными донорами. Частота минорной аллели Т составляла 0,27. Обнаружена значительная коррреляция полиморфизма Т(861-20)С гена ТФР β1 с низкой МПКТ позвоночника (r=0,18; р=0,025) у русских больных ОП. При введении поправки на возраст (Z-score) МПКТ у носителей генотипа СС оказалась значительно ниже, чем у носителей генотипов СТ и ТТ. Это сопровождалось более низкими уровнями экспрессии гена ТФР β1 в периферической крови носителей СС-генотипа (n=10) по сравнению с объединенной группой носителей двух других генотипов (n=22) в группе больных ОП (р=0,03) У здоровых женщин — носителей СС-генотипа (n=18) — не наблюдалось изменения экспрессии гена ТФР β1 по сравнению с объединенными представителями двух других генотипов (n=21). В целом в группе больных ОП наблюдали значительно более низкую экспрессию гена ТФР β1 по сравнению со здоровым контролем (р=0,04). Заключение. Ассоциация генотипа (861-20)СС гена ТФР β1 с пониженной МПКТ позвоночника у больных ОП сопровождается пониженной экспрессией гена ТФР β1. Поэтому выявление полиморфизма Т(861-20)С гена ТФР β1 может служить предиктором развития ОП, а у носителей генотипа (861-20)СС можно ожидать более тяжелой формы заболевания.

Список литературы

1. <div><p>World Health Organization Study Group. Assessment of fracture risk and its application for screening for postmenopausal osteoporosis. Geneva: WHO, 1994.</p><p>Colon-Emeric C.S., Saag K.G. Osteoporotic fractures in older adults. Best Pract Res Clin Rheumatol 2006;20:695-706.</p><p>Patel M.S., Rubin L.A, Cole D.E. Genetic determinants of peak bone mass. In: The osteoporosis Primer. Ed. by J.E. Henderson, D. Goltzman. Cambridge: Cambridge University Press, 2000;131 —46.</p><p>Kung A.W., Huang Q.Y. Genetic and environmental determinants of osteoporosis. J Musculoskelet Neuronal Interact 2007;7:26-32.</p><p>Heller H.A., Salzano F.M., Barrantes R. et al. Intra- and intercontinental molecular variability of an Alu insertion in the 3’ untranslated region of the LDLR gene. Hum Biol 2004;76:591-604.</p><p>Крылов М.Ю., Короткова Т.А., Мякоткин В.А., Беневоленская Л.И. Аллельные полиморфизмы щелочной фостатазы, растворимой кислой фосфатазы и витамин Д-связывающего белка при постменопаузальном остеопорозе. Тер арх 2004;5:61-6.</p><p>Тагиева А.Н., Сметник М.З., Сухих В.П., Крылов М.Ю. Функциональная роль полиморфизмов генов рецептора витамина Д, эстрогенового рецептора (ER) цепи альфа 1 коллагена I типа (COLIAI) при постменопаузальном остеопорозе. Мед ген 2005;4:90-5.</p><p>Battila J., Fagundes N.J., Heller A.H. et al. Alu insertion polymorphisms in Native Americans and related Asian populations. Ann Hum Biol 2006;33:142-60.</p><p>Мякоткин В.А., Крылов М.Ю., Казеева А.К. и др. Роль полиморфизмов генов LRP5, BMP4 и TGF1 при постменопаузальном остеопорозе. Науч-практич ревматол 2008;3:8-15.</p><p>Маслова К.А., Крылов М.Ю., Торопцова Н.В. и др. Полиморфизмы генов эстрогеновых рецепторов α и β при постменопаузальном остеопорозе. Науч-практич ревматол 2008;3:16-21.</p><p>Cohen M.M. Jr. TGF-beta/Smad signaling system and its pathologic correlates. Am J Med Genet A 2003;116:1-10.</p><p>Oreffo R.O.C., Mundy G.R., Seyedin S.M., Bonewald L.F. Activation of the bone-derived latent TGF0 complex by isolated osteoclasts. Biochem Biophys Res Commun 1989;158:817-23.</p><p>Oursler M.J. Osteoclast synthesis and secretion and activation of latent transforming growth factor β. J Bone Miner Res 1994;9:443-52.</p><p>Bonewald L.F. Transforming growth factor-β. In: Bilezikian J.P., Raisz L.G., Rodan G.A. (eds). Principles of Bone Biology. San Diego, CA, USA: Academic Press, 1996;647—59.</p><p>Noda M., Camilliere J.J. In vitro stimulation of bone formation by transforming growth factor-0. Endocrinology 1989;124:2991-4.</p><p>Pacifici R. Estrogen, cytokines, and pathogenesis of post menopausal osteoporosis. J Bone Miner Res 1996;11:1043-51.</p><p>Hughes D.E., Dai A., Tiffee J.C. et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-0. Nat Med 1996;2:1132-6.</p><p>Ashcroft G.S., Dodsworth J., van Boxtel E. et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF01 levels. Nat Med 1997;3:1209-15.</p><p>Ongphiphadhanakul B., Chanprasertyothin S., Payattikul P. et al. Association of a G2014A transition in exon 8 of the estrogen receptor-β gene with postmenopausal osteoporosis. Osteoporosis Int 2001;12:1015-9.</p><p>Janssens K., ten Dijke P., Ralston S.H. et al. Transforming growth factor β1 mutations in Camurati-Endelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem 2003;278:7718-24.</p><p>Geiser A.G., Zeng Q.Q., Sato M. et al. Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-β gene. Bone 1998;23:87-93.</p><p>Lindberg M.K., Moverare S., Eriksson A.-L. et al. Identification of estrogen-regulated genes of potential importance for the regulation of trabecular bone mineral density. J Bone Miner Res 2002;17:2183-95.</p><p>Yamada Y. Association of polymorphisms of the transforming growth factor-β1 gene with genetic susceptibility to osteoporosis. Pharmacogenetics 2001;11:765-71.</p><p>Lau H.H., Ho A.Y.Y., Luk K.D.K., Kung A.W.C. Transforming growth factor-β1 gene polymorphisms and bone turnover, bone mineral density and fracture risk in Southern Chinese women. Calcif Tissue Int 2004;74:516-21.</p><p>Langdahl B.L., Carstens M., Stenkjaer L., Eriksen E.F. Polymorphisms in the transforming growth factor-beta1 gene and osteoporosis. Bone 2003;32:297-310.</p><p>Benson S.A., Hall M.N., Silhavy T.J. Genetic analysis of protein export in Escherichia coli. Annu Rev Biochem 1985;54:101-34.</p><p>Verner K., Schatz G. Protein translocation across membranes. Science 1988;241:1307-13.</p><p>Keen R.W., Snieder H., Molloy H. et al. Evidence of association and linkage disequilibrium between a novel polymorphism in the transforming growth factor beta 1 gene and hip bone mineral density: a study of female twins. Rheumatology 2001;40:48-54.</p><p>Grainger D.J., Heathcote K., Chiano M. et al. Genetic control of the circulating concentrations of transforming growth factor-beta1. Hum Mol Genet 1999;8:93-7.</p><p>Hinke V., Seck T., Clanget C., Scheidt-Nave C. et al. Association of transforming growth factor-β1 (TGFβ1) T29→ C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGFβ1 in a population-based sample of postmenopausal German women. Calcif Tissue Int 2001;69:315-20.</p><p>Grainger D.J., Percival J., Chiano M., Spector T.D. The role of serum TGF-beta isoforms as potential markers of osteoporosis. Osteoporosis Int 1999;9:398-404.</p><p>Dick I.M., Devine A., Li S. et al. The T869C TGFbeta polymorphism is associated with fracture, bone mineral density, and calcaneal quantitative ultrasound in elderly women. Bone 2003;33:335-41.</p><p>Shah R., Hurley C.K., Posch P.E. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP-509-T (C.-1347C&gt;T). Hum Genet 2006;120:461-9.</p><p>Mak Y.T., Hampson G., Beresford J.N., Spector T.D. Variations in genome-wide gene expression in identical twins - a study of primary osteoblast-like culture from female twins discordant for osteoporosis. BMC Genetics 2004;5:14-21.</p><p>Riancho J.A., Valero C., Naranjo A. et al. Identification of an apromatese haplotype that is associated with gene expression and postmenopausal osteoporosis. J Clin Endocrinol Metab 2006;92:660-5.</p><p>Miller S.A., Dykes D.D., Polesky H.F. A simple salting-out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res 1988;16:12-5.</p><p>Четина Е.В., ДиБаттиста Д., Пул А.Р. Роль простагландина Е2 в ингибировании разрушения коллагена суставного хряща больных остеоартрозом. Науч-практич ревматол 2009;3:18-24.</p><p>Tzakas P., Wong B.Y., Logan A.G. et al. Transforming growth factor beta-1 (TGFb1) and peak bone mass: Association between intragenic polymorphisms and quantitative ultrasound of the heel. BMC Musculoskelet Disord 2005;6:29-39.</p><p>Hering S., Jost C., Schulz H. et al. Circulating transforming growth factor-beta1 (TGFbeta1) is elevated by extensive exercise. Eur J Appl Physiol 2002;86:406-10.</p><p>Rosen C.J. Endocrine disorders and osteoporosis. Curr Opin Rheumatol 1997;9:355-61.</p><p>Garnero P. Biochemical markers of bone turnover: recent data and avenues for the future. Rev Rhum Engl Ed 1999;66:538-42.</p><p>Teitelbaum S.L. Postmenopausal osteoporosis, T cells, and immune dysfunction. Proc Natl Acad Sci USA 2004;101:16711-12.</p><p>Rifas L., Arackal S. T cells regulate the expression of matrix metalloproteinase in human osteoblasts via a dual mitogen-activated protein kinase mechanism. Arthr Rheum 2003;48:993-1001.</p><p>Xiao P., Chen Y., Jiang H. et al. In vivo genome-wide expression study on human circulating B cells suggest a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res 2008;23:644-54.</p><p>Finkelman R.D., Bell N.H., Strong D.D. et al. Ovariectomy selectively reduces the concentration of transforming growth factor beta in rat bone: implications for estrogen deficiency-associated bone loss. Proc Natl Acad Sci USA 1992;89:12190-3.</p><p>Ikeda T., Shigeno C., Kasai R. et al. Ovariectomy decreases the mRNA levels of transforming growth factor-beta 1 and increases the mRNA levels of osteocalcin in rat bone in vivo. Biochem Biophys Res Commun 1993;194:1228-33.</p></div><br />


Для цитирования:


Chetina E.V., Krylov M.Y., Demin N.V., Никитинская О.А., Korotkova E.A., Торопцова Н.В., Maslova K.A., Беневоленмкая Л.И., Myakotkin V.A. Ассоциация полиморфизма Т(861-20)С трансформирующего фактора роста (ТФР) р1 с минеральной плотностью кости и экспрессией гена ТФР р! при постменопаузальном остеопорозе. Научно-практическая ревматология. 2012;50(2):50-55. https://doi.org/10.14412/1995-4484-2012-1273

For citation:


Chetina E.V., Krylov M.Y., Demin N.V., Nikitinskaya O.A., Korotkova E.A., Toroptsova N.V., Maslova K.A., Benevolenskaya L.I., Myakotkin V.A. Association of transforming growth factor (TGF) p1 T(861-20)C polymorphism with bone mineral density and TGFip gene expression in postmenopausal osteoporosis. Rheumatology Science and Practice. 2012;50(2):50-55. (In Russ.) https://doi.org/10.14412/1995-4484-2012-1273

Просмотров: 657


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)