Preview

Научно-практическая ревматология

Расширенный поиск

НАРУШЕНИЕ РЕГУЛЯТОРНЫХ МЕХАНИЗМОВ СИГНАЛЬНОГО ПУТИ mTOR ПРИ ОСТЕОАРТРОЗЕ

https://doi.org/10.14412/1995-4484-2012-1290

Полный текст:

Аннотация

Цель — изучить характер нарушения регуляторных механизмов сигнального пути mTOR (mammalian target of rapamycin) посредством мониторинга экспрессии генов в крови больных остеоартрозом (ОА) на разных стадиях заболевания. Материал и методы. В исследование включено 33 амбулаторных больных ОА, 14 больных ОА перед эндопротезированием коленного сустава и 27 здоровых людей — контроль (средний возраст 58,0+7,4; 56,5+8,9 и 55,0+8,3 года соответственно). Общую РНК выделяли из крови и использовали для определения уровня экспрессии генов в полимеразной цепной реакции в режиме реального времени для АМФ-активируемой протеинкиназы (АМПК); фактора, индуцируемого гипоксией 1а (ФИГ1а); белков, лимитирующих скорость гексозаминового сигнального пути, — глутамин-фруктозо-6-фосфатамидотрансферазы и ацетил-глюкозаминилтрансферазы, а также транспортера глюкозы GLUT1 и компонентов 6-й и 7-й ступеней гликолитического пути — глюкозо-6-фосфатдегидрогеназы и фосфоглицерат киназы 1 соответственно; генов, связанных с липогенезом, — синтазы жирных кислот (СЖК) и активностью пентозофосфатного пути — глюкозо-6-фосфат дегидрогеназы в крови больных ОА на разных стадиях заболевания. Результаты. Анализ экспрессии генов показал, что у больных ОА с низкой экспрессией гена mTOR (подгруппа LOW) экспрессия генов AIT и GLUT1 оказалась существенно ниже, а гена АМПК — выше, чем у здоровых лиц. У больных ОА с высокой экспрессией гена mTOR (подгруппа HIGH) экспрессия всех исследуемых генов значительно повышена, за исключением гена СЖК, причем наибольшее превышение экспрессии по сравнению с контрольными лицами наблюдалось в случае генов АМПК и ФИГ1α. У больных с поздней стадией заболевания (подгруппа ES) экспрессия всех исследованных генов, включая ген СЖК, оказалась повышенной по сравнению со здоровыми лицами. Заключение. Развитие ОА сопровождается значительным снижением эффективности энергетического метаболизма. При этом у больных с низкой экспрессией гена mTOR недостаток энергии может быть связан с ослаблением транспорта метаболитов в клетки. У больных с высокой экспрессией mTOR он может быть обусловлен дефицитом конечного акцептора электронов — кислорода, а у больных на поздней стадии заболевания не исключено патологическое перераспределение энергетических субстратов в пользу липогенеза.

Об авторах

Elena Vasilyevna Chetina

Laboratory of Genetics


E A Bratygina

Laboratory of Genetics


Е. М. Зайцева

Laboratory of Genetics


Е. П. Шарапова

Laboratory of Genetics


A L Alekseyeva

Laboratory of Genetics


N V Demin

Laboratory of Genetics


С. А. Макаров

Laboratory of Genetics


Список литературы

1. <div><p>Henrotin Y., Lambert C., Couchourel D. et al. Nutraceuticals: do they represent a new era in the management of osteoarthritis? — А narrative review from the lessons taken with five products. Osteoarthr Cartilage 2011; 19: 1—21.</p><p>Marshall K.W., Zhang H., Nossova N. Chondrocyte genomics: implications for disease modification in osteoarthritis. Drug Discov Today 2006; 11: 825—32.</p><p>Четина Е.В. Сигнальные пути нутриентов и ревматические заболевания. Науч.-практич. ревматол. (в печати).</p><p>Raught B., Gingras A.C., Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Аcad Sci USA 2005; 98: 7037—44.</p><p>Nicklin P., Bergman P., Zhang B. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136: 521—34.</p><p>Sofer A., Lei K., Johannessen C.M. et al. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25: 5834—45.</p><p>Hara K., Yonezawa K., Weng Q.P. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484—94.</p><p>Мецлер Д. Биохимия. Химические реакции в живой клетке. М.: Мир, 1980.</p><p>Love D.C., Hanover J.A. The hexosamine signaling pathway: Deciphering the O-GlcNAc code. Sci. STKE 2005; 2005: re13.</p><p>Smith S., Witkowski A., Joshi A.K. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 2003; 42: 289—317.</p><p>Kahn B.B., Alquier T., Carling D. et al. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 15—25.</p><p>Carling D. The AMP-activated protein kinase cascade, а unifying system for energy control. Trends Biochem Sci 2004; 29: 18—24.</p><p>Четина Е.В., Братыгина Е.А., Зайцева Е.М. и др. Прогнозирование течения остеоартроза по экспрессии гена mTOR (mammalian target of rapamycin). Науч.-практич. ревматол. 2012; 1: 27—32.</p><p>Четина Е.В. Ингибирование активности расщепления коллагена в хряще больных остеоартрозом при активации гликолиза. Остеопороз и остеопатии 2011; 1: 8—12.</p><p>Четина Е.В., Пул А.Р. Роль ростовых факторов в подавлении разрушения коллагена и дифференциации хондроцитов при остеоартрозе. Вестн. РАМН 2008; 5: 15—21.</p><p>Coggon D., Reading I., Croft P. et al. Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord 2001; 25: 622—7.</p><p>Bliddal H., Leeds A.R., Stigsgaard L. et al. Weight loss as treatment for knee osteoarthritis symptoms in obese patients: 1-year results from a randomised controlled trial. Ann Rheum Dis 2011; 70: 1798—803.</p><p>Gwinn D.M., Shackelford D.B., Egan D.F. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214—26.</p><p>Ghosh S., Blumental H.J., Davidson E. et al. Glucosamine metabolism.V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem 1960; 235: 1265—73.</p><p>Johnston I.R., McGuire E.J., Jourdian G.W. et al. Incorporation of N-acetyl-D-glucosamine into glycoproteins. J Biol Chem 1966; 241: 5735—7.</p><p>Shikhman A.R., Brinson D.C., Valbracht J. et al. Differential metabolic effects of glucoseamine and N-acetylglucoseaminein human articular chondrocytes. Osteoarthr Cartilage 2009; 17: 1022—8.</p><p>Ryu J.H., Shin Y., Huh Y.H. et al. Hypoxia-inducible factor-2α regulates Fas-mediated chondrocyte apoptosis during osteoarthritic cartilage destruction. Cell Death Differ 2012; 19: 440—50.</p><p>Gouze J.N., Gouze E., Palmer G.D. et al. Adenovirus-mediated gene transfer of glutamine: fructose-6-phosphate amidotransferase antagonizes tha effect of interleukin-1beta on rat chondrocytes. Osteoarthr Cartilage 2004; 12: 217—24.</p><p>Tong K.M., Chen C.P., Huang K.C. et al. Adiponectin increases MMP-3 expression in human chondrocytes through AdipoR1 signaling pathway. J Cell Biochem 2011; 112: 1431—40.</p><p>Fermor B., Gurumurthy A., Diekman B.O. Hypoxia, RONS and energy metabolism in articular cartilage. Osteoarthr Cartilage 2010; 18: 1167—73.</p><p>Banhegyi G., Csala M., Benedetti A. Hexose-6-phosphate dehydrogenase: linking endocrinology and metabolism. J Mol Endocrinol 2009; 42: 283—9.</p><p>Senesi S., Marcolongo P., Manini I. et al. Constant expression of hexose-6-phosphate dehydrogenase during differentiation of human adipose-derived mesenchymal stem cells. J Mol Endocrinol 2008; 41: 125—33.</p><p>Bujaska I.J., Hewitt K.N., Hauton D. et al. Lack of hexose-6-phosphate dehydrogenase impairs lipid mobilization from mouse adipose tissue. Endocrinology 2008; 149: 2584—91.</p><p>Ford J.H. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age 2010; 32: 231—7.</p><p>Rumberger J.M., Wu T., Hering M.A. et al. Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels. J Biol Chem 2003; 278: 28547—52.</p><p>McClain D.A., Hazel M., Parker G. et al. Adipocytes with increased hexosamine flux exhibit insulin resistance, increased glucose uptake, and increased synthesis and storage of lipid. Am J Physiol Endocrinol Metab 2005; 288: T973— T979.</p><p>Swagell C.D., Henly D.C., Morris C.P. Expression analysis of a human hepatic cell line in response to palmitate. Biochem Biophys Res Commun 2005; 328: 432—41.</p><p>Planey S.L., Keay S.K., Zhang C.O. et al. Palmitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling. Mol Biol Cell 2009; 20: 1454—63.</p></div><br />


Для цитирования:


Chetina E.V., Bratygina E.A., Зайцева Е.М., Шарапова Е.П., Alekseyeva A.L., Demin N.V., Макаров С.А. НАРУШЕНИЕ РЕГУЛЯТОРНЫХ МЕХАНИЗМОВ СИГНАЛЬНОГО ПУТИ mTOR ПРИ ОСТЕОАРТРОЗЕ. Научно-практическая ревматология. 2012;50(6):33-37. https://doi.org/10.14412/1995-4484-2012-1290

For citation:


Chetina E.V., Bratygina E.A., Zaitseva E.M., Sharapova E.P., Alekseyeva A.L., Demin N.V., Makarov S.A. IMPAIRED REGULATORY MECHANISMS OF THE mTOR SIGNALING PATHWAY IN OSTEOARTHROSIS. Rheumatology Science and Practice. 2012;50(6):33-37. (In Russ.) https://doi.org/10.14412/1995-4484-2012-1290

Просмотров: 635


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)