Preview

Научно-практическая ревматология

Расширенный поиск

Т-регуляторные клетки при ревматоидном артрите

https://doi.org/10.14412/1995-4484-2014-430-437

Полный текст:

Аннотация

Аутоиммунные (иммуновоспалительные) ревматические болезни определяются как клинические синдромы, развитие которых связано с «патологической» активацией Т-клеток, В-клеток и других клеток иммунной системы, приводящей к прогрессирующему воспалению и деструкции внутренних органов. Несмотря на высокую эффективность комбинированной терапии геннонженерными биологическими препаратами (ГИБП) и стандартными базисными противовоспалительными препаратами, в первую очередь метотрексатом, менее чем у половины пациентов с ревматоидным артритом (РА) удается достигнуть значимого клинического эффекта и крайне редко – стойкой ремиссии. Комбинированное действие генетических и внешнесредовых факторов может приводить к потере иммунной толерантности, в основе которой лежит нарушение баланса между эффекторными и регуляторными компонентами иммунной системы. Восстановление толерантности без хронической неспецифической иммуносупрессии, наблюдаемой на фоне приема большинства современных противовоспалительных препаратов (включая ГИБП), рассматривается как важнейшая задача фармакотерапии РА. Целью обзора является, во-первых, обсуждение роли так называемых Т-регуляторных клеток (Трег) как одного из критических компонентов поддержания толерантности и, во-вторых, перспективы фармакотерапии РА, связанных с коррекцией функциональной активности Трег.

Об авторах

Е. Л. Насонов
ФГБНУ Научно-исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия

директор ФГБНУ «НИИР им. В.А. Насоновой», академик РАН, докт. мед. наук, профессор 



Е. Н. Александрова
ФГБНУ Научно-исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия

заведующая лабораторией иммунологии и молекулярной биологии ревматических заболеваний ФГБНУ НИИР им. В.А. Насоновой, докт. мед. наук



А. С. Авдеева
ФГБНУ Научно-исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия

научный сотрудник лаборатории иммунологии и молекулярной биологии ревматических 
заболеваний ФГБНУ НИИР им. В.А. Насоновой, канд. мед. наук



Ю. П. Рубцов
ГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова», Москва
Россия


Список литературы

1. Насонов ЕЛ, редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва: ИМА-ПРЕСС; 2013. 549 с. [Nasonov EL, editor. Genno-inzhenernye biologicheskie preparaty v lechenii revmatoidnogo artrita [Genetically engineered biological preparations in treatment of rheumatoid arthritis]. Moscow: IMA-PRESS; 2013. 549 p.]

2. Singh JA, Christensen R, Wells GA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2009 Oct 7;(4):CD007848. DOI: 10.1002/14651858.CD007848.pub2.

3. Salliot C, Finckh A, Katchamart W, et al. Indirect comparisons of the efficacy of biological antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to onventional

4. disease-modifying antirheumatic drugs or to an anti-tumor necrosis factor agents: a meta-analysis. Ann Rheum Dis. 2011;70(2):266–71. DOI: 10.1136/ard.2010.132134. Epub 2010 Nov 19.

5. Burmester G, Feist E, Dorner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10(2):77–88. DOI: 10.1038/nrrheum.2013.168.

6. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Eng J Med. 2011;365(23):2205–19. DOI: 10.1056/NEJMra1004965.

7. Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345(5):340–50. DOI: http://dx.doi.org/10.1056/NEJM200108023450506.

8. Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;24(1):5–19. DOI: 10.1111/j.1600-065X.2011.01019.x.

9. Nepom GT, St Clair EW, Turka LA. Challenges in the pursuit of immune tolerance. Immunol Rev. 2011;241(1):49–62. DOI: 10.1111/j.1600-065X.2011.01003.x.

10. Smiek DE, Ehlers MR, Nepom GT. Restoring the balance: immunotherapeutic combinations for autoimmune diseases. Dis Model Mech. 2014;7(5):503–13. DOI: 10.1242/dmm.015099.

11. Gershon RK, Kondo K. Cell unteractions in the induction of tolerance: the role of thymus lymphocytes. Immunology. 1970;18(5):723–37.

12. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

13. Singer BD, King LS, D’Alessio FR. Regulatory T cell as immunotherapy. Frontiers Immunol. 2014;(5):1–7. DOI: 10.3389/fimmu.2014.00046.

14. Abbas AK, Benoist C, Bluestone JA, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):300–8. DOI: 10.1038/ni.2554.

15. Быковская СН, Насонов ЕЛ. Роль дефектов иммуносупрессии в развитии аутоиммунных заболеваний. Научно-практическая ревматология. 2005;(4):81–4. [Bykovskaya SN, Nasonov EL. Role of immunosupression defects in the development of autoimmune diseases. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2005;(4):81–4. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2005-623.

16. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87. DOI: 10.1016/j.cell.2008.05.009.

17. Rudensky AY. Regulatory T cells and FoxP3. Immunol Rev. 2011;241;260–8. DOI: 10.1111/j.1600-065X.2011.01018.x.

18. Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57–63. DOI:http://dx.doi.org/10.1084/jem.20061852. Epub 2007 Jan 2.

19. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8(2):191–7. DOI: http://dx.doi.org/10.1038/ni1428. Epub 2006 Nov 30.

20. Wildin RS, Freitas A. IPEX and FOXP3: clinical and research perspectives. J Autoimmun. 2005;25 Suppl:56–62. DOI: http://dx.doi.org/10.1016/j.jaut.2005.04.008.

21. Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. OncoImmunology. 2013;2(11):e26586. Epub 2013 Oct 21. DOI: http://dx.doi.org/10.4161/onci.26586.

22. Tse K, Tse H, Sidney J, et al. T cells in atherosclerosis. Int Immunol. 2013;25(11):615–22. DOI: 10.1093/intimm/dxt043.

23. Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity. 2009;30(6):899–911. DOI: 10.1016/j.immuni.2009.03.019. Epub 2009 May 21.

24. Miyara M, Ito Y, Sakaguchi S. T reg-cell therapies for autoimmune rheumatic duseases. Nat Rev Rheumatol. 2014. DOI: 10.1038/nrhheum.2014.105.

25. Prakken B, Wehrens E, van Wijl F. Quality or Quantity? Unraveling the role of T reg cells in rheumatoid arthritis. Arthritis Rheum. 2013;65(3):552–4. DOI: 10.1002/art.37831.

26. Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45. DOI: 10.1016/j.immuni. 2009.04.010.

27. Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21(10):1105–11. DOI: 10.1093/intimm/dxp095. Epub 2009 Sep 7.

28. Cribbs AP, Kennedy A, Penn H, et al. Regulatory T cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the IDO pathway. Arthritis Rheum. 2014. DOI: 10.1002/art.38715

29. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164(1):183–90. DOI: http://dx.doi.org/10.4049/jimmunol.164.1.183.

30. Sakaguchi S, Vignali DA, Rudensky AY, et al. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13(6):461–7. DOI: 10.1038/nri3464. Epub 2013 May 17.

31. Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science. 1995;268(5216):1472–6. DOI: http://dx.doi.org/10.1126/science.7770771.

32. Caudy AA, Reddy ST, Chatila T, et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, Xlinked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7. DOI: http://dx.doi.org/10.1016/j.jaci.2006.10.007. Epub 2006 Dec 27.

33. Cao D, van Vollenhoven R, Klareskog L, et al. CD25brightCD4+regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004;6(4):R335–46. DOI: http://dx.doi.org/10.1186/ar1192. Epub 2004 Jun 7.

34. Van Amelsfort JMR, Jacobs KMG, Bijlsma JWJ, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50(9):2775–85. DOI: http://dx.doi.org/10.1002/art.20499.

35. Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford). 2006;45(10):1210–7. DOI: http://dx.doi.org/10.1093/rheumatology/kel089. Epub 2006 Mar 29.

36. Jiao Z, Wang W, Jia R, et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36(6):428–33. DOI: http://dx.doi.org/10.1080/03009740701482800.

37. Kawashiri SY, Kawakami A, Okada A, et al. CD4+CD25highCD127low/- Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J Rheumatol. 2011;38(12):2517–21. DOI: 10.3899/jrheum.110283. Epub 2011 Sep 15.

38. Ponchel F, Goeb V, Parmar R, et al. An immunological biomarker to predict MTX response in early RA. Ann Rheum Dis. 2013. DOI: 10.1136/annrheumdis-2013-203566.

39. Han GM, O’Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253(1–2):92–101. DOi: 10.1016/j.cellimm.2008.05.007. Epub 2008 Jul 22.

40. Cao D, Malmström V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33(1):215–23. DOI: http://dx.doi.org/10.1002/immu.200390024.

41. Mö ttö nen M, Heikkinen J, Mustonen L, et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol. 2005;140(2):360–7. DOI: http://dx.doi.org/10.1111/j.1365-2249.2005.02754.x.

42. Moradi B, Schnatzer P, Hagmann S, et al. CD4+CD25+higyhCD127low-regulatory T cell are enriched in rheumatoid arthritis and osteoarthritis joints – analysis of frequency and phenotype in synovial membrane, synovial fluide and peripheral blood. Arthritis Res Ther. 2014;16(2):R97. DOI: http://dx.doi.org/10.1186/ar4545.

43. Hensor RMA, Hunt L, Patmar R, et al. Predicting the evaluation of inflammatory arthritis in ACPA-positive individuals: can T-cell subset help? Ann Rheum Dis. 2014;73 (Suppl 1):A14. DOI: http://dx.doi.org/10.1136/annrheumdis-2013-205124.32.

44. Ehrenstein, MR, Evans JG, Singt A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med. 2004;200(3):277–85. DOI: http://dx.doi.org/10.1084/jem.20040165. Epub 2004 Jul 26.

45. McGovern JL, Nguyen DX, Notley CA, et al. Th17 cells are restarained by T reg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 2012;64(10):3129–38. DOI: 10.1002/art.34565.

46. Herrath J, Muller M, Amoudzur P, et al. The inflammatory milieu in the rheumatic joint reduce regulatory T-cell function. Eur J Immunol. 2011;41(8):2279–90. DOI: 10.1002/eji.201041004. Epub 2011 Jul 4.

47. Valencia X, Stephens G, Goldbach-Mansky R, et al. TNF down modulate the function of human CD4+CG25hiT-regulatory cells. Blood. 2006;108(1):253–61. DOI: http://dx.doi.org/10.1182/blood-2005-11-4567. Epub 2006 Mar 14.

48. Blache C, Lequerre T, Roucheux A, et al. Number and phenotype of rheumatoid artritis patients` CD4+CD26hi regulatory T cells are not affected by adalimumab or etanercept. Rheumatology (Oxford). 2011;50(10):1814–22. DOI: 10.1093/rheumatology/ker183. Epub 2011 Jul 26.

49. Vigna-Perez M, Abud-Mendoza C, Portillo-Salazar H, et al. Immune effects of therapy with adalimumab in patients with rheumatoid arthritis. Clin Exp Immunol. 2005;141(2):372–80.DOI; http://dx.doi.org/10.1111/j.1365-2249.2005.02859.x.

50. Dombrecht EJ, Aerts NE, Schuermegh AJ, et al. Influence of anti-tumor necrosis factor therapy (adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin Exp Rheumatol. 2006;24(1):31–7.

51. Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med. 2007;204(1):33–9. DOI: http://dx.doi.org/10.1084/jem.20061531. Epub 2007 Jan 2.

52. Julir A, Erra A, Palacio C, et al. An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis. PLoS One. 2009;4(10):e7556. DOI: 10.1371/journal.pone.0007556.

53. Nie H, Zheng Y, Li R, et al. Phosphorilation of FOXP3 controls regulatory T cell function and is inhibited by TNFα in rheumatoid arthritis. Nat Med. 2013:19(3):322–8. DOI: 10.1038/nm.3085. Epub 2013 Feb 10.

54. Chen X, Oppenheim JJ. Contrasting effects of TNG and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Letters. 2011;585(23):3611–8. DOI: 10.1016/j.febslet.2011.04.025. Epub 2011 Apr 15.

55. Ali Y, Shah S. Infliximab-induced systemic lupus erythematosus. Ann Intern Med. 2002;137(7):625–6.

56. Favalli EG, Sinigaglia L, Varenna M, Arnoldi C. Drug-induced lupus following treatment with infliximab in rheumatoid arthritis. Lupus. 2002;11(11):753–5.

57. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Rev. 2014;13(6):668–77. DOI: 10.1016/j.autrev.2013.12.004. Epub 2014 Jan 11.

58. Насонов ЕЛ, Денисов ЛН, Станислав МЛ. Интерлейкин 17 – новая мишень для антицитокиновой терапии иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2013;51(5):545–52. [Nasonov EL, Denisov LN, Stanislav ML. Interleukin-17 is a new target for anti-cytokine therapy of immune inflammatory rheumatic diseases. Nauchnoprakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2013;51(5):545–52. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2013-1547.

59. Gaffen SL. Role of IL-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2009;11(5):365–70.

60. Насонов ЕЛ, Александрова ЕН, Авдеева АС, Панасюк ЕЮ. Ингибиция интерлейкина 6 – новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2013;51(4):416–27. [Nasonov EL, Aleksandrova EN, Avdeeva AS, Panasyuk EYu. Interleukin 6 inhibition: new possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2013;51(4):416–27. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2013-1254.

61. Kimura A., Kishimoto T. IL 6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–5. DOI: 10.1002/eji.201040391.

62. Samson M, Audia S, Janikashvilili N, et al. Inhibition of interleukin 6 function corrects Th17/Treg imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(8):2499–503. DOI: 10.1002/art.34477.

63. Sarantopoulos A, Tselios I, Gkougkourelas I, et al. Tocilizumab leads to a rapid and sustained increase of T regulatory cells in rheumatoid arthritis patients. Arthritis Rheum. 2014. DOI 10.1002/art.38714.

64. Pesce B, Soto L, Sabugo F, et al. Effect of interleukin-6 receptor blockade on the balabce between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171(3):237–42. DOI: 10.1111/cei.12017.

65. Thiolat A, Swmerano L, Pers YM, et al. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimaental arthritis. Arthritis Rheum. 2014;66(2):273–83. DOI: 10.1002/art.38246.

66. Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by FoxP3+ Treg: hydrolysis of extracellular ATP and immune supression. Blood. 2007;110(4):1225–32. Epub 2007 Apr 20.

67. Fletcher JM, Lonergan R, Costelloe L, et al. CD39+FoxP3+ regulatory T cells supress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10. DOI: 10.4049/jimmunol.0901881. Epub 2009 Nov 16.

68. Kochetkova I, Thornburg T, Callis G, Pascual DW. Segregated regulatory CD39+CD4+ T cell function: TGF-beta-producing FoxP3- and IL-10-prodicing FoxpP3+ cells are interdependebt for protection against collagen-induced arthritis. J Immunol. 2011;187(9):4654–66. DOI: 10.4049/jimmunol.1100530. Epub 2011 Oct 3.

69. Hamel KM, Cao Y, Ashaye A, et al. B cell depletion enhance T regulatory cell activity essential in the supression of arthritis. J Immunol. 2011;187(9):4900–6. DOI: 10.4049/jimmunol. 1101844. Epub 2011 Sep 23.

70. Feuchtenberger M, Muller S, Roll P, et al. Frequency of regulatory T cells is not affected by transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Open Rheumatol J. 2008;2:81–8. DOI: 10.2174/1874312900802010081. Epub 2008 Dec 3.

71. Pieper J, Herrath J, Raghavan S, et al. CTLA4-IgG (abatacept) therapy modulates T cell effector function in autoantibody-positive rheumatoid arthritis patients. BMC Immunology. 2013;14:34. DOI: 10.1186/1471-2172-14-34.

72. Alvarez-Quiroga C, Abud-Mendoza C, Donuz-Padilla L, et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of Treg cells in patients with rheumatoid arthritis. J Clin Immunool. 2011;31(4):588–95. DOI: 10.1007/s10875-011-9527-5. Epub 2011 Apr 13.

73. Насонов ЕЛ, Каратеев ДЕ, Чичасова НВ. Новые рекомендации по лечению ревматоидного артрита (EULAR, 2013): место метотрексата. Научно-практическая ревматология. 2014;52(1):8–26. [Nasonov EL, Karateev DE, Chichasova NV. New recommendations for the management of rheumatoid arthritis (EULAR, 2013): the role of methotrexate. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2014;52(1):8–26. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2014-8-26.

74. Lina C, Conghua W, Nan L, Ping Z. Combined treatment of etanercept and MTX reserves Th1/Th2, Th17/Treg inbalance in patients with rheumatoid arthritis. J Clin Immunol. 2011;31(4):596–606. DOI: 10.1007/s10875-011-9542-6. Epub 2011 May 12.

75. Xinqiang S, Fei L, Nan L, et al. Therapeutic efficacy of experimental rheumatoid arthritis with low-doses methotrexate by increasing partially CD4+CD25+ Treg and inducing Th1 to Th2 shift in both cells and cytokines. Biomed Pharmacother. 2010;64(7):463–71. DOI: 10.1016/j.biopha.2010.01.007. Epub 2010 Feb 25.

76. Suarez A, Lopez P, Gomez J, Gutierrez C. Enrichment of CD4+CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids. Ann Rheum Dis. 2006;65(11):1512–7. DOI: http://dx.doi.org/10.1136/ard.2005.049924. Epub 2006 Apr 10.

77. Cousens LP, Tassone R, Mazer B, et al. Tregitope update: Mechanism of action parallels IVIg. Autoimmun Rev. 2013;12(3):436–43. DOI: 10.1016/j.autrev.2012.08.017. Epub 2012 Aug 28.

78. Czeloth N. Selective activation of naturally occurring regulatory T cells (TREGs) by the monoclonal antibody BT-061 as a novel therapeutic opportunity: pre-clinical and early clinical results [abstract OP0138]. Ann Rheum Dis. 2010;69 (Suppl. 3):99.

79. Uherek C. The novel regulatory T cell (TREG) agonistic monoclonal antibody (mAb) tregalizumab (BT-061): further characterization of mechanism of action, epitope binding, and clinical effects in patients with rheumatoid arthritis. Available from: www.biotest.de [online] (2011).

80. Suntharalingam G, Perry M, Ward S, et al. Cytokine storm in a phase 1 trial of anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. DOI: http://dx.doi.org/10.1056/NEJMoa063842.

81. Tabares P, Berr S, Romer PS, et al. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur J Immunol. 2014;44(4):1225–36. DOI: 10.1002/eji.201343967. Epub 2014 Feb 1.

82. Koreth J, Phil D, Matsuoka K et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365(22):2055–66. DOI: 10.1056/NEJMoa1108188.

83. Saadoun D, Rosenzwaig M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365(22):2067–77. DOI: 10.1056/NEJMoa1105143.

84. Long SA, Rieck M, Sanda S, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments TREGS yet transiently impairs beta-cell function. Diabetes. 2012;61(9):2340–8. DOI: 10.2337/db12-0049. Epub 2012 Jun 20.

85. Joller N, Kutchroo VK. Good guyes gone bad: exTreg cells promote autoimmune arthritis. Nat Med. 2014;20(1):15–7. DOI: 10.1038/nm.3439.

86. Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3 T cell into Th17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–8. DOI: 10.1038/nm.3432. Epub 2013 Dec 22.

87. Wang T, Sun X, Zhao J, et al. Regulatory T cell in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2014 Feb 12. DOI: 10.1136/annrheumdis-2013-204228.


Для цитирования:


Насонов Е.Л., Александрова Е.Н., Авдеева А.С., Рубцов Ю.П. Т-регуляторные клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430-437. https://doi.org/10.14412/1995-4484-2014-430-437

For citation:


Nasonov E.L., Aleksandrova E.N., Avdeeva A.S., Rubtsov Y.P. T-REGULATORY CELLS IN RHEUMATOID ARTHRITIS. Rheumatology Science and Practice. 2014;52(4):430-437. (In Russ.) https://doi.org/10.14412/1995-4484-2014-430-437

Просмотров: 745


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)