Preview

Научно-практическая ревматология

Расширенный поиск

Молекулярные механизмы регуляции боли у больных остеоартрозом

https://doi.org/10.14412/1995-4484-2016-424-431

Полный текст:

Аннотация

Цель – изучение механизмов, определяющих уровень боли, на основании анализа профилей экспрессии генов, участвующих в деструкции суставного хряща, воспалении и регуляции метаболизма в крови больных остеоартрозом (ОА) с разными уровнями экспрессии гена mTOR (Mammalian Target Of Rapamycin) и на разных стадиях заболевания.

Материал и методы. Работа проведена на образцах периферической крови 47 амбулаторных больных ОА; 21 больного с поздней стадией ОА, госпитализированного для эндопротезиования коленного сустава, и 27 здоровых людей, составивших контрольную группу (средний возраст – 60,0±7,1; 56,6±8,9 и 58,6±8,3 года соответственно), а также образцов суставного хряща, полученных при оперативном лечении у 21 больного ОА и при аутопсии у 14 здоровых ранее лиц (средний возраст – 38,2±4,3 года), погибших в результате травмы. Состояние больных оценивали по данным клинического, рентгенологического, ультразвукового и денсито- метрического исследования. Общую РНК выделяли из крови и после обратной транскрипции использовали для определения уровня экспрессии генов в полимеразной цепной реакции в режиме реального времени.

Результаты и обсуждение. В подгруппе с низкой экспрессией гена mTOR экспрессия всех исследованных генов оказалась на уровне контроля, за исключением гена матриксной металлопротеиназы 9 (ММП9), экспрессия которого была значительно выше. У больных с высокой экспрессией гена mTOR и больных на поздней стадии ОА экспрессия всех исследованных генов была значительно выше, чем в контроле. Обнаружена положительная корреляция экспрессии генов трансформирующего ростового фактора β1 (TРФβ1; r=0,594; p=0,005) и катепсина К (r=0,595; p=0,003) в крови и суставном хряще больных ОА на поздней стадии заболевания.

Заключение. Разные уровни боли у больных ОА с разными уровнями экспрессии гена mTOR могут быть связаны с соотношением экспрессии генов ММП9 и тканевого ингибитора металлопротеиназ 1 (ТИМП1), избыточной или недостаточной активностью гена mTOR, а также с экспрессией факторов роста – TРФβ1 и сосудистого эндотелиального фактора роста, участвующих в процессах регенерации тканей. 

Об авторах

Е. В. Четина
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


Г. А. Маркова
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


Е. А. Таскина
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


Е. П. Шарапова
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


Н. Г. Кашеварова
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


Л. И. Алексеева
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


В. В. Коломацкий
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


М. А. Макаров
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


А. Л. Логунов
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


С. А. Макаров
ФГБНУ Научно- исследовательский институт ревматологии им. В.А. Насоновой, Москва
Россия
115522 Москва, Каширское шоссе, 34А


А. Н. Кузин
ГБУЗ г. Москвы «Бюро судебно-медицинской экспертизы Департамента здравоохранения г. Москвы», Москва
Россия
115516 Москва, Тарный проезд, 3


Список литературы

1. Tchetina EV, Semyonova LA. Genetic mechanisms of cartilage degradation in the development and osteoarthritis. In: Protein Purification and Analysis III – Methods and applications; Edited by iConcept Press. iConcept Press Ltd.; 2014.

2. Buckwalter JA, Saltzman C, Brown T, et al. The impact of osteoarthritis: implications for research. Clin Orthop Relat Res. 2004 Oct;427 Suppl:S6-15. doi: 10.1097/01.blo.0000143938.30681.9d

3. Dean DD, Azzo W, Martel-Pelletier J, et al. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989 Aug;84(2):678-85. doi: 10.1172/JCI114215

4. Muller B. Cytokine imbalance in non-immunological chronic dis￾ease. Cytokine. 2002 Jun 21;18(6):334-9. doi: 10.1006/cyto.2002.0882

5. Aigner T, Rose J, Martin J, et al. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res. 2004;7(2):134-45. doi: 10.1089/1549168041552964

6. Lorenzo P, Bayliss MT, Heinegard D. Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol. 2004 Oct;23(6):381-91. doi: 10.1016/j.matbio.2004.07.007

7. Sharif M., Whitehouse A, Sharman P, et al. Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase 3. Arthritis Rheum. 2004 Feb;50(2):507- 15. doi: 10.1002/art.20020

8. Clauw DJ, Witter J. Pain and rheumatology: thinking outside the joint. Arthritis Rheum. 2009 Feb;60(2):321-4. doi: 10.1002/art.24326

9. Stoppiello LA, Mapp PI, Wilson D, et al. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheum. 2014 Nov;66(11):3018-27. doi: 10.1002/art.38778

10. Poole AR, Guilak F, Abramson SB. Etiopathogenesis of osteoarthritis. In: Moskowitz RW, Altman RD, Hochberg MC, Buckwalter JA, and Goldberg VM, editors. Osteoarthritis: Diagnosis and Medical/Surgical Management. 4th edition. Lippincott, PA, USA: Williams &Wilkins; 2007. P. 27-49.

11. Sofat N, Ejindu V, Kiely P. What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology (Oxford). 2011 Dec;50(12):2157-65. doi: 10.1093/rheumatology/ker283. Epub 2011 Sep 27.

12. Lee AS, Ellman MB, Yan D, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013 Sep 25;527(2):440-7. doi: 10.1016/j.gene.2013.05.069. Epub 2013 Jul 2.

13. Saito T. Neurogenic inflammation in osteoarthritis of the knee. Mod Rheumatol. 2003 Dec;13(4):301-4. doi: 10.3109/s10165-003- 0253-6

14. Orita S, Ishikawa T, Miyagi M, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord. 2011 Jun 16;12:134. doi: 10.1186/1471-2474-12-134

15. Moreton BJ, Tew V, das Nair R, et al. Pain phenotype in patients with knee osteoarthritis: classification and measurement properties of painDETECT and self-report Leeds assessment of neuropathic symptoms and signs scale in a cross-sectional study. Arthritis Care Res (Hoboken). 2015 Apr;67(4):519-28. doi: 10.1002/acr.22431

16. Ordeberg G. Characterization of joint pain in human OA. Novartis Found Symp. 2004;260:105-15; discussion 115-21, 277-9.

17. Attur M, Belitskaya-Levy I, Oh C, et al. Increased interleukin-1β gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis. Arthritis Rheum. 2011 Jul;63(7):1908-17. doi: 10.1002/art.30360

18. Prochazkova M, Zanvit P, Dolezal T, et al. Increased gene expression and production of spinal cyclooxygenase 1 and 2 during experimental osteoarthritis pain. Physiol Res. 2009;58(3):419-25. Epub 2008 Jul 18.

19. Vardeh D, Wang D, Costigan M, et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest. 2009 Feb;119(2):287-94. doi: 10.1172/JCI37098. Epub 2009 Jan 5.

20. Leichsenring A, Bä cker I, Wendt W, et al. Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model. BMC Neurosci. 2008 Aug 12;9:80. doi: 10.1186/1471-2202- 9-80

21. Kawasaki Y, Xu ZZ, Wang X, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008 Mar;14(3):331-6. doi: 10.1038/nm1723. Epub 2008 Feb 10.

22. McDougall JJ, Schuelert N, Bowyer J. Cathepsin K inhibition reduces CTXII levels and joint pain in the guinea pig model of spontaneous osteoarthritis. Osteoarthr Cartilage. 2010 Oct;18(10):1355-7. doi: 10.1016/j.joca.2010.07.014. Epub 2010 Aug 6.

23. Ohtori S, Takahashi K, Moriya H, Myers RR. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976). 2004 May 15;29(10):1082-8. doi: 10.1097/00007632-200405150-00006

24. Moon SJ, Woo YJ, Jeong JH, et al. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthr Cartilage. 2012 Nov;20(11):1426-38. doi: 10.1016/j.joca.2012.08.002. Epub 2012 Aug 10.

25. Lee J, Hong YS, Jeong JH, et al. Coenzyme Q10 ameliorates pain and cartilage degradation in a rat model of osteoarthritis by regulating nitric oxide and inflammatory cytokines. PLoS One. 2013 Jul 22;8(7):e69362. doi: 10.1371/journal.pone.0069362

26. Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci. 2009 Jul;30(7):336-40. doi: 10.1016/j.tips.2009.04.002. Epub 2009 Jun 10.

27. Tejima E, Guo S, Murata Y, et al. Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase TIMP-1. J Neurotrauma. 2009 Nov;26(11):1935-41. doi: 10.1089/neu.2009- 0959

28. Franses RE, McWilliams DF, Mapp PI, Walsh DA. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthr Cartilage. 2010 Apr;18(4):563-71. doi: 10.1016/j.joca.2009.11.015. Epub 2009 Dec 21.

29. Lyu D, Yu W, Tang N, et al. The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocam￾pal pathways. Mol Pain. 2013 Dec 9;9:64. doi: 10.1186/1744- 8069-9-64

30. Jiang F, Hua LM, Jiao YL, et al. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator. Neurosci Bull. 2014 Feb;30(1):21-32. doi: 10.1007/s12264-013-1377-0. Epub 2013 Oct 16.

31. Melemedjian OK, Khoutorsky A, Sorge RE, et al. mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain. 2013 Jul;154(7):1080-91. doi: 10.1016/j.pain.2013.03.021. Epub 2013 Mar 15.

32. Geranton SM, Jimenez-Diaz L, Torsney C, et al. A rapamycin￾sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 2009 Nov 25;29(47):15017-27. doi: 10.1523/JNEUROSCI.3451-09.2009

33. Price TJ, Dussor G. AMPK: An emerging target for modification of injury-induced pain plasticity. Neurosci Lett. 2013 Dec 17;557 Pt A:9-18. doi: 10.1016/j.neulet.2013.06.060. Epub 2013 Jul 3.

34. Blaney Davidson EN, van Caam AP, Vitters EL, et al. TGF-β is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthr Cartilage. 2015, Mar;23(3):478-86. doi: 10.1016/j.joca.2014.12.005. Epub 2014 Dec 18.

35. Lantero A, Tramullas M, Diaz A, Hurle MA. Transforming growth factor-β in normal nociceptive processing and pathological pain models. Mol Neurobiol. 2012 Feb;45(1):76-86. doi: 10.1007/s12035-011-8221-1. Epub 2011 Nov 29.

36. Echeverry S, Shi XQ, Haw A, et al. Transforming growth factorbeta1 impairs neuropathic pain through pleiotropic effects. Mol Pain. 2009 Mar 27;5:16. doi: 10.1186/1744-8069-5-16

37. Christiansen BA, Bhatti S, Goudarzi R, Emami S. Management of osteoarthritis with avocado/soybean unsaponifiables. Cartilage. 2015 Jan;6(1):30-44. doi: 10.1177/1947603514554992

38. Tramullas M, Lantero A, Diaz A, et al. BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) reveals the involvement of the transforming growth factor-beta family in pain modulation. J Neurosci. 2010 Jan 27;30(4):1502-11. doi: 10.1523/JNEUROSCI.2584-09.2010

39. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012 May 29;8(7):390-8. doi: 10.1038/nrrheum.2012.80

40. Brown RA, Weiss JB. Neovascularisation and its role in the osteoarthritic process. Ann Rheum Dis. 1988 Nov;47(11):881-5. doi: 10.1136/ard.47.11.881

41. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford). 2005 Jan;44(1):7-16. doi: 10.1093/rheumatology/keh344. Epub 2004 Aug 3.

42. Ashraf S, Wibberley H, Mapp PI, et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann Rheum Dis. 2011 Mar;70(3):523-9. doi: 10.1136/ard.2010.137844. Epub 2010 Nov 15.

43. Walker GD, Fischer M, Gannon J, et al. Expression of type-X collagen in osteoarthritis. J Orthop Res. 1995 Jan;13(1):4-12. doi: 10.1002/jor.1100130104

44. Ballara SC, Miotla JM, Paleolog EM. New vessels, new approaches: angiogenesis as a therapeutic target in musculoskeletal disor￾ders. Int J Exp Pathol. 1999 Oct;80(5):235-50. doi: 10.1046/j.1365- 2613.1999.00129.x

45. Kolostova K, Taltynov O, Pinterova D, et al. Tissue repair driven by two different mechanisms of growth factor plasmids VEGF and NGF in mice auricular cartilage: regeneration mediated by administering growth factor plasmids. Eur Arch Otorhinolaryngol. 2012 Jul;269(7):1763-70. doi: 10.1007/s00405-011-1821-6. Epub 2011 Nov 10.

46. Tchetina EV, Poole AR, Zaitseva EM, et al. Differences in mTOR (mammalian target of rapamycin) gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and dis￾ease activity. Arthritis. 2013;2013:Article ID 461486. doi: 10.1155/2013/461486. Epub 2013 Jun 25.

47. Четина ЕВ, Братыгина ЕА, Зайцева ЕМ и др. Прогнозирование течения остеоартроза по экспрессии гена mTOR (mammalian target of rapamycin). Научно-практическая ревматология. 2012;50(1):27-32 [Chetina EV, Bratygina EA, Zaitseva EM, et al. Prediction of the course of osteoarthrosis from mTOR (mammalian target of rapamycin) gene expression. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2012;50(1):27-32 (In Russ.)]. doi: 10.14412/1995- 4484-2012-500

48. Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 1986 Aug;29(8):1039- 49. doi: 10.1002/art.1780290816

49. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis. 1957;16(4):494-501. doi: 10.1136/ard.16.4.494

50. Bellamy N. WOMAC osteoarthritis Index: a user's guide. London, Ontario: University of Western Ontario; 1995.

51. Backhaus M, Burmester G, Gerber T, et al. Guidelines for muscular skeletal ultrasound in rheumatology. Ann Rheum Dis. 2001;60(7):641-9. doi: 10.1136/ard.60.7.641

52. World Health Organization Study Group: Assessment of fracture risk and its application for screening for postmenopausal osteoporosis. Genova: WHO; 1994.

53. Dejica VM, Mort JS, Laverty S, et al. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am J Pathol. 2008 Jul;173(1):161-9. doi: 10.2353/ajpath.2008.070494. Epub 2008 May 29.

54. Четина ЕВ, Братыгина ЕА, Зайцева ЕМ и др. Нарушение регуляторных механизмов сигнального пути mTOR при остеоартрозе. Научно-практическая ревматология. 2012;50(6):33-7 [Chetina EV, Bratygina EA, Zaitseva EM, et al. Impaired regulatory mechanisms of the mTOR signaling pathway in osteoarthrosis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2012;50(6):33-7 (In Russ.)]. doi: 10.14412/1995-4484-2012-1290

55. Nakamoto K, Kawasaki S, Kobori T, et al. Involvement of matrix metalloproteinase-9 in the development of morphine tolerance. Eur J Pharmacol. 2012 May 15;683(1-3):86-92. doi: 10.1016/j.ejphar.2012.03.006. Epub 2012 Mar 15.

56. Chua SD Jr, Messier SP, Legault C, et al. Effect of an exercise and dietary intervention on serum biomarkers in overweight and obese adults with osteoarthritis of the knee. Osteoarthr Cartilage. 2008 Sep;16(9):1047-53. doi: 10.1016/j.joca.2008.02.002. Epub 2008 Mar 24.


Для цитирования:


Четина Е.В., Маркова Г.А., Таскина Е.А., Шарапова Е.П., Кашеварова Н.Г., Алексеева Л.И., Коломацкий В.В., Макаров М.А., Логунов А.Л., Макаров С.А., Кузин А.Н. Молекулярные механизмы регуляции боли у больных остеоартрозом. Научно-практическая ревматология. 2016;54(4):424-431. https://doi.org/10.14412/1995-4484-2016-424-431

For citation:


Chetina E.V., Markova G.A., Taskina E.A., Sharapova E.P., Kashevarova N.G., Alekseeva L.I., Kolomatsky V.V., Makarov M.A., Logunov A.L., Makarov S.A., Kuzin A.N. Molecular mechanisms of pain regulation in patients with osteoarthritis. Rheumatology Science and Practice. 2016;54(4):424-431. (In Russ.) https://doi.org/10.14412/1995-4484-2016-424-431

Просмотров: 354


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)