Preview

Научно-практическая ревматология

Расширенный поиск

Боль и воспаление. Часть 1. Патогенетические аспекты

https://doi.org/10.14412/1995-4484-2016-693-704

Полный текст:

Аннотация

Облегчение страданий, связанное с быстрым и максимально полным устранением болевых ощущений, – важнейшая задача, стоящая перед врачами многих медицинских специальностей. Очевидно, что решить ее можно лишь при четком понимании процессов, определяющих развитие и хронизацию боли. Ключевую роль здесь играет воспаление – универсальный приспособительный механизм, всегда сопровождающий повреждение живой ткани. В первой части настоящего обзора рассмотрены основные этапы развития воспалительной реакции, начиная от первичного повреждения, сопровождающегося выбросом молекул, выступающих как «сигнал тревоги», и заканчивая развертыванием полной картины воспалительного ответа с привлечением многих клеточных элементов и гиперэкспрессией цитокинов и провоспалительных медиаторов. Представлена биологическая основа феномена периферической и центральной сенситизации ноцицептивной системы, который жестко связан с воспалением. Особое внимание уделяется возможности естественного завершения воспалительной реакции, адаптивным механизмам, регулирующим данный процесс, а также причинам, препятствующим этому и определяющим хронизацию воспаления.

Об авторах

А. Е. Каратеев
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

зав. лабораторией гастроэнтерологических проблем при ревматических заболеваниях ФГБНУ НИИР им. В.А. Насоновой, канд. мед. наук

115522 Москва, Каширское шоссе, 34А



Д. Е. Каратеев
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

врио директора ФГБНУ НИИР им. В.А. Насоновой, докт. мед. наук

115522 Москва, Каширское шоссе, 34А



О. С. Давыдов
Научно-практический психоневрологический центр им. З.П. Соловьева Департамента здравоохранения г. Москвы
Россия

ведущий научный сотрудник Научно-практического психоневрологического центра им. З.П. Соловьева Департамента здравоохранения г. Москвы, канд. мед. наук

115419 Москва, ул. Донская, 43



Список литературы

1. Al Maini M, Adelowo F, Al Saleh J, et al. The global challenges and opportunities in the practice of rheumatology: white paper by the World Forum on Rheumatic and Musculoskeletal Diseases. Clin Rheumatol. 2015 May;34(5):819-29. doi: 10.1007/s10067-014-2841-6. Epub 2014 Dec 14.

2. Murray CJ, Barber RM, Foreman KJ, et al. Global, regional, and national disability- adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet. 2015 Nov 28;386(10009):2145-91. doi: 10.1016/S0140-6736(15)61340-X. Epub 2015 Aug 28.

3. Балабанова РМ, Эрдес ШФ. Распространенность ревматических заболеваний в России в 2012–2013 гг. Научно-практическая ревматология. 2015;52(2):120-4 [Balabanova RM, Erdes SF. The incidence and prevalence of rheumatic diseases in Russia in 2012–2013. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2015;53(2):120-4 (In Russ.)]. doi: 10.14412/1995-4484-2015-120-124

4. Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000Prime Rep. 2015 May 26;7:56. doi: 10.12703/P7-56. eCollection 2015.

5. Paladini A, Fusco M, Coaccioli S, et al. Chronic pain in the elderly: The case for new therapeutic strategies. Pain Physician. 2015 Sep-Oct;18(5):E863-76.

6. Schaible HG, Ebersberger A, Natura G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res Ther. 2011 Apr 28;13(2):210. doi: 10.1186/ar3305

7. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015 Feb 26;160(5):816-27. doi: 10.1016/j.cell.2015.02.010

8. Гусев ЕЮ, Черешнев ВА. Эволюция воспаления. Цитокины и воспаление. 2012;11(4):5-13 [Gusev EYu, Chereshnev VA. Evolution of inflammation. Tsitokiny i Vospalenie. 2012;11(4):5- 13 (In Russ.)].

9. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008 Jul 24;454(7203):428-35. doi: 10.1038/nature07201

10. Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 2009 Aug;17(8):971-9. doi: 10.1016/j.joca.2009.03.002. Epub 2009 Mar 12.

11. Fahy N, Farrell E, Ritter T, et al. Immune modulation to improve tissue engineering outcomes for cartilage repair in the osteoarthritic joint. Tissue Eng Part B Rev. 2015 Feb;21(1):55-66. doi: 10.1089/ten.TEB.2014.0098. Epub 2014 Aug 4.

12. Frangogiannis NG. Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol. 2015 May;30(3):240-5. doi: 10.1097/HCO.0000000000000158

13. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015 Aug;173(2):370-8. doi: 10.1111/bjd.13954. Epub 2015 Jul 14.

14. Scrivo R, Vasile M, Bartosiewicz I, Valesini G. Inflammation as «common soil» of the multifactorial diseases. Autoimmun Rev. 2011 May;10(7):369-74. doi: 10.1016/j.autrev.2010.12.006. Epub 2010 Dec 30.

15. Mullen LM, Chamberlain G, Sacre S. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease. Arthritis Res Ther. 2015 May 15;17:122. doi: 10.1186/s13075-015-0645-y

16. Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunol. 2016 May 20;5(5):e85. doi: 10.1038/cti.2016.22. eCollection 2016.

17. O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol. 2013;13:453-60. doi: 10.1038/nri3446

18. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005;26:447-54. doi: 10.1016/j.it.2005.06.004

19. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004 Sep;6(3):203- 8. doi: 10.1016/j.ccr.2004.09.003

20. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821-32. doi: 10.1016/j.cell.2010.01.040

21. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15:738-48. doi: 10.1038/ni.2919

22. Van de Sande MG, Baeten DL. Immunopathology of synovitis: from histology to molecular pathways. Rheumatology (Oxford). 2016 Apr;55(4):599-606. doi: 10.1093/rheumatology/kev330.Epub 2015 Sep 10.

23. Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine. 2014 Dec;70(2):185-93. doi: 10.1016/j.cyto.2014.06.019. Epub 2014 Jul 24.

24. Новиков АА, Александрова ЕН, Диатроптова МА, Насонов ЕЛ. Роль цитокинов в патогенезе ревматоидного артрита. Научно-практическая рематология. 2010;48(2):71-82 [Novikov AA, Aleksandrova EN, Diatroptova MA, Nasonov EL. Role of cytokines in the pathogenesis of rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2010;48(2):71-82. (In Russ.)]. doi: 10.14412/1995-4484- 2010-1420

25. Laria A, Lurati A, Marrazza M, et al. The macrophages in rheumatic diseases. J Inflamm Res. 2016 Feb 9;9:1-11. doi: 10.2147/JIR.S82320. eCollection 2016.

26. Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adultderived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40:91-104. doi: 10.1016/j.immuni. 2013.11.019

27. Liu-Bryan R. Synovium and the innate inflammatory network in osteoarthritis progression. Curr Rheumatol Rep. 2013 May;15(5):323. doi: 10.1007/s11926-013-0323-5

28. Mabey T, Honsawek S. Cytokines as biochemical markers for knee osteoarthritis. World J Orthop. 2015 Jan 18;6(1):95-105. doi: 10.5312/wjo.v6.i1.95. eCollection 2015.

29. Smith MD, Triantafillou S, Parker A. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol. 1997 Feb;24(2):365-71.

30. Benito MJ, Veale DJ, FitzGerald O, et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005 Sep;64(9):1263-7. Epub 2005 Feb 24.

31. Alvarez-Soria MA, Largo R, Santillana J, et al. Long term NSAID treatment inhibits COX-2 synthesis in the knee synovial membrane of patients with osteoarthritis: differential proinflammatory cytokine profile between celecoxib and aceclofenac. Ann Rheum Dis. 2006 Aug;65(8):998-1005. Epub 2006 Feb 13.

32. De Queiroz BZ, Pereira DS, Lopes RA, et al. Association between the plasma levels of mediators of inflammation with pain and disability in the elderly with acute low back pain: Data from the back complaints in the elders (BACE)-Brazil study. Spine (Phila Pa 1976). 2016 Feb;41(3):197-203. doi: 10.1097/BRS.0000000000001214

33. Weber KT, Satoh S, Alipui DO, et al. Exploratory study for identifying systemic biomarkers that correlate with pain response in patients with intervertebral disc disorders. Immunol Res. 2015 Dec;63(1-3):170-80. doi: 10.1007/s12026-015-8709-2

34. Igarashi A, Kikuchi S, Konno S, Olmarker K. Inflammatory cytokines released from the facet joint tissue in degenerative lumbar spinal disorders. Spine (Phila Pa 1976). 2004 Oct 1;29(19):2091-5. doi: 10.1097/01.brs.0000141265.55411.30

35. Genevay S, Finckh A, Payer M, et al. Elevated levels of tumor necrosis factor-alpha in periradicular fat tissue in patients with radiculopathy from herniated disc. Spine (Phila Pa 1976). 2008 Sep 1;33(19):2041-6. doi: 10.1097/BRS.0b013e318183bb86

36. Cuellar JM, Golish SR, Reuter MW, et al. Cytokine evaluation in individuals with low back pain using discographic lavage. Spine J. 2010 Mar;10(3):212-8. doi: 10.1016/j.spinee.2009.12.007

37. Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014 Feb;39(3):508-19. doi: 10.1111/ejn.12462

38. Swieboda P, Filip R, Prystupa A, Drozd M. Assessment of pain: types, mechanism and treatment. Ann Agric Environ Med. 2013;Spec no. 1:2-7.

39. Bardoni R, Takazawa T, Tong CK, et al. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci. 2013 Mar;1279:90-6. doi: 10.1111/nyas.12056

40. Mendell LM. Constructing and deconstructing the gate theory of pain. Pain. 2014 Feb;155(2):210-6. doi: 10.1016/j.pain.2013.12.010. Epub 2013 Dec 12.

41. Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010 Nov;16(11):1248-57. doi: 10.1038/nm.2235. Epub 2010 Oct 14.

42. Zhang RX, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis Cartilage. 2013 Sep;21(9):1308-15. doi: 10.1016/j.joca.2013.06.013

43. Lee AS, Ellman MB, Yan D, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013 Sep 25;527(2):440-7. doi: 10.1016/j.gene.2013.05.069. Epub 2013 Jul 2.

44. Hofman Z, de Maat S, Hack CE, Maas C. Bradykinin: inflammatory product of the coagulation system. Clin Rev Allergy Immunol. 2016 Apr 28. [Epub ahead of print].

45. Kaplan AP, Joseph K. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway. Adv Immunol. 2014;121:41-89. doi: 10.1016/B978-0-12-800100-4.00002-7

46. Rosa AC, Fantozzi R. The role of histamine in neurogenic inflammation. Br J Pharmacol. 2013 Sep;170(1):38-45. doi: 10.1111/bph.12266

47. Liu T, Ji RR. New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch. 2013 Dec;465(12):1671-85. doi: 10.1007/s00424-013- 1284-2. Epub 2013 May 1.

48. Garcia-Recio S, Gascon P. Biological and pharmacological aspects of the NK1-receptor. Biomed Res Int. 2015;2015:495704. doi: 10.1155/2015/495704. Epub 2015 Sep 3.

49. O'Connor TM, O'Connell J, O'Brien DI, et al. The role of substance P in inflammatory disease. J Cell Physiol. 2004;201(2):167-80. doi: 10.1002/jcp.20061

50. Russo AF. Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol. 2015;55:533-52. doi: 10.1146/annurev-pharmtox-010814-124701. Epub 2014 Oct 8.

51. Lewin GR, Nykjaer A. Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci. 2014 Feb;39(3):363-74. doi: 10.1111/ejn.12466

52. Deval E, Gasull X, NoСl J, et al. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther. 2010 Dec;128(3):549-58. doi: 10.1016/j.pharmthera.2010.08.006.Epub 2010 Aug 31.

53. Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev. 2012 Oct;92(4):1699-775. doi: 10.1152/physrev.00048.2010

54. Lee Y, Lee CH, Oh U. Painful channels in sensory neurons. Mol Cells. 2005 Dec 31;20(3):315-24.

55. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487-517. doi: 10.1146/annurev.neuro.24.1.487

56. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015 Oct;67(4):821-70. doi: 10.1124/pr.114.009654

57. Namer B, Schick M, Kleggetveit IP, et al. Differential sensitization of silent nociceptors to low pH stimulation by prostaglandin E2 in human volunteers. Eur J Pain. 2015 Feb;19(2):159-66. doi: 10.1002/ejp.532. Epub 2014 May 30.

58. Hirth M, Rukwied R, Gromann A, et al. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density. Pain. 2013 Nov;154(11):2500-11. doi: 10.1016/j.pain.2013.07.036. Epub 2013 Jul 26.

59. Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470. doi: 10.1186/s13075-014-0470-8

60. Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal. 2015 Feb 20;22(6):486-504. doi: 10.1089/ars.2014.5884. Epub 2014 Apr 15.

61. Sokolove J, Pisetsky D. Bone loss, pain and inflammation: three faces of ACPA in RA pathogenesis. Ann Rheum Dis. 2016 Apr;75(4):637-9. doi: 10.1136/annrheumdis-2015- 208308. Epub 2016 Jan 14.

62. Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammationdriven chronic pain. Nat Rev Drug Discov. 2014 Jul;13(7):533-48. doi: 10.1038/nrd4334. Epub 2014 Jun 20.

63. Goebel A. Autoantibody pain. Autoimmun Rev. 2016 Jun;15(6):552-7. doi: 10.1016/j.autrev.2016.02.011. Epub 2016 Feb 12.

64. Walsh DA, McWilliams DF. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10:581-92; published online 27 May 2014. doi: 10.1038/nrrheum.2014.64

65. Bianchi M, Martucci C, Ferrario P, et al. Increased tumor necrosis factor- and prostaglandin E2 concentrations in the cerebrospinal fluid of rats with inflammatory hyperalgesia: The effects of analgesic drugs. Anesth Analg. 2007;104:949-54. doi: 10.1213/01.ane.0000258060.89380.27

66. Dong L, Smith JR, Winkelstein BA. Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury. J Neurotrauma. 2013 May 15;30(10):818-25. doi: 10.1089/neu.2012.2600. Epub 2013 May 6.

67. Jain NK, Ishikawa TO, Spigelman I, Herschman HR. COX-2 expression and function in the hyperalgesic response to paw inflammation in mice. Prostaglandins Leukot Essent Fatty Acids. 2008 Dec;79(6):183-90. doi: 10.1016/j.plefa.2008.08.001. Epub 2008 Oct 1.

68. Harney DF, Dooley M, Harhen B, et al. Nimesulide 90 mg orally twice daily does not influence postoperative morphine requirements after major chest surgery. Anesth Analg. 2008 Jan;106(1):294-300, table of contents. doi: 10.1213/01.ane.0000289528.87796.0b

69. Buvanendran A, Kroin JS, Berger RA, et al. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology. 2006 Mar;104(3):403-10. doi: 10.1097/00000542-200603000-00005

70. Piirainen A, Kokki M, Hautajä rvi H, et al. The cerebrospinal fluid distribution of postoperatively administred dexketoprofen and etoricoxib and their effect on pain and inflammatory markers in patients undergoing hip arthroplasty. Clin Drug Investig. 2016 Jul;36(7):545-55. doi: 10.1007/s40261-016-0400-4

71. Carlton SM. Nociceptive primary afferents: they have a mind of their own. J Physiol. 2014 Aug 15;592(16):3403-11. doi: 10.1113/jphysiol.2013.269654. Epub 2014 May 30.

72. Kuan YH, Shyu BC. Nociceptive transmission and modulation via P2X receptors in central pain syndrome. Mol Brain. 2016 May 26;9(1):58. doi: 10.1186/s13041-016-0240-4

73. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int. 2014;2014:495789. doi: 10.1155/2014/495789. Epub 2014 Sep 3.

74. Santangelo RM, Acker TM, Zimmerman SS, et al. Novel NMDA receptor modulators: an update. Expert Opin Ther Pat. 2012 Nov;22(11):1337-52. doi: 10.1517/13543776.2012.728587. Epub 2012 Sep 26.

75. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci. 2011 Apr;33(8):1351-65. doi: 10.1111/j.1460-9568.2011.07628.x. Epub 2011 Mar 14.

76. Sugimoto MA, Sousa LP, Pinho V, et al. Resolution of inflammation: What controls its onset? Front Immunol. 2016 Apr 26;7:160. doi: 10.3389/fimmu.2016.00160. eCollection 2016.

77. Freire MO, van Dyke TE. Natural resolution of inflammation. Periodontol 2000. 2013 Oct;63(1):149-64. doi: 10.1111/prd.12034

78. Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматоидном артрите. Научно- практическая ревматология. 2014;52(4):430-7 [Nasonov EL, Aleksandrova EN, Avdeeva AS, Rubtsov YuP. T-regulatory cells in rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(4):430-7 (In Russ.)]. doi: 10.14412/1995-4484-2014-430-437

79. Laskin DL. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem Res Toxicol. 2009 Aug;22(8):1376-85. doi: 10.1021/tx900086v

80. Braga TT, Agudelo JS, Camara NO. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol. 2015 Nov 25;6:602. doi: 10.3389/fimmu. 2015.00602. eCollection 2015.

81. Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016 Mar 29. doi: 10.1038/nrd.2016.39. [Epub ahead of print].

82. Lim JY, Park CK, Hwang SW. Biological roles of resolvins and related substances in the resolution of pain. Biomed Res Int. 2015;2015:830930. doi: 10.1155/2015/830930. Epub 2015 Aug 3.

83. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014 Oct 30;7(2):a016311. doi: 10.1101/cshperspect.a016311

84. Straub RH, Wolff C, Fassold A, et al. Antiinflammatory role of endomorphins in osteoarthritis, rheumatoid arthritis, and adjuvant- induced polyarthritis. Arthritis Rheum. 2008 Feb;58(2):456- 66. doi: 10.1002/art.23206

85. Lowin T, Straub RH. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res Ther. 2015 Sep 6;17:226. doi: 10.1186/s13075-015-0743-x

86. Richardson D, Pearson RG, Kurian N, et al. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther. 2008;10(2):R43. doi: 10.1186/ar2401. Epub 2008 Apr 16.

87. Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation – the three stages of rheumatoid arthritis. Eur J Immunol. 2014 Jun;44(6):1593-9. doi: 10.1002/eji.201444486. Epub 2014 May 3.

88. Chimenti MS, Triggianese P, Conigliaro P, et al. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015 Sep 17;6:e1887. doi: 10.1038/cddis.2015.246

89. Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage. 2015 Nov;23(11):1966-71. doi: 10.1016/j.joca.2015.01.008

90. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012 Aug;51(2):249-57. doi: 10.1016/j.bone.2012.02.012. Epub 2012 Feb 22.

91. Кондратьева ЛВ, Горбунова ЮН, Попкова ТВ, Насонов ЕЛ. Роль жировой ткни при ревматоидном артрите. Клиническая медицина. 2014;(6):62-7 [Kondrat'eva LV, Gorbunova YuN, Popkova TV, Nasonov EL. The role of adipose tissue in rheumatoid arthritis. Klinicheskaya Meditsina. 2014;(6):62-7 (In Russ.)].

92. Wolk R, Bertolet M, Singh P, et al. Prognostic value of adipokines in predicting cardiovascular outcome: Explaining the obesity paradox. Mayo Clin Proc. 2016 Jun 9. pii: S0025-6196(16)30109-4. doi: 10.1016/j.mayocp.2016.03.020 [Epub ahead of print].

93. Scotece M, Conde J, Lopez V, et al. Adiponectin and leptin: new targets in inflammation. Basic Clin Pharmacol Toxicol. 2014 Jan;114(1):97-102. doi: 10.1111/bcpt.12109. Epub 2013 Jul 26.

94. Choe SS, Huh JY, Hwang IJ, et al. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016 Apr 13;7:30. doi: 10.3389/fendo.2016.00030. eCollection 2016.

95. Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit. 2015 May 22;21:1478- 84. doi: 10.12659/MSM.894437

96. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016 May;59(5):879-94. doi: 10.1007/s00125-016-3904-9. Epub 2016 Mar 3.

97. Krinninger P, Ensenauer R, Ehlers K, et al. Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. J Clin Endocrinol Metab. 2014;99:2500-9. doi: 10.1210/jc.2013-2611

98. De Rekeneire N, Peila R, Ding J, et al. Diabetes, hyperglycemia, and inflammation in older individuals: the health, aging and body composition study. Diabetes Care. 2006;29:1902-8. doi: 10.2337/dc05-2327

99. Fuentes-Antras J, Ioan AM, Tunon J, et al. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol. 2014;2014:847827. doi: 10.1155/2014/847827. Epub 2014 Mar 12.

100. Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014 Jan 9;2:411-29. doi: 10.1016/j.redox.2013.12.016. eCollection 2014.

101. Kayama Y, Raaz U, Jagger A, et al. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015 Oct 23;16(10):25234-63. doi: 10.3390/ijms161025234

102. Sandireddy R, Yerra VG, Areti A, et al. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol. 2014;2014:674987. doi: 10.1155/2014/674987. Epub 2014 Apr 30.

103. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015 Mar 10;6(2):109-20. doi: 10.14336/AD.2014.0305. eCollection 2015.

104. Park MH, Kim DH, Lee EK, et al. Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res. 2014 Dec;37(12):1507-14. doi: 10.1007/s12272-014-0474-6. Epub 2014 Sep 20.

105. Kolovou GD, Kolovou V, Mavrogeni S. We are ageing. Biomed Res Int. 2014;2014:808307. doi: 10.1155/2014/808307. Epub 2014 Jun 22.


Для цитирования:


Каратеев А.Е., Каратеев Д.Е., Давыдов О.С. Боль и воспаление. Часть 1. Патогенетические аспекты. Научно-практическая ревматология. 2016;54(6):693-704. https://doi.org/10.14412/1995-4484-2016-693-704

For citation:


Karateev A.E., Karateev D.E., Davydov O.S. PAIN AND INFLAMMATION. PART 1. PATHOGENETIC ASPECTS. Rheumatology Science and Practice. 2016;54(6):693-704. (In Russ.) https://doi.org/10.14412/1995-4484-2016-693-704

Просмотров: 484


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)