Preview

Научно-практическая ревматология

Расширенный поиск

Проблемы иммунопатологии ревматоидного артрита: эволюция болезни

https://doi.org/10.14412/1995-4484-2017-277-294

Полный текст:

Аннотация

В обзоре рассмотрены новые данные, касающиеся иммунопатологии ревматоидного артрита (РА), с акцентом на раннюю стадию заболевания. Эволюция РА включает несколько последовательно (или дискретно) развивающихся стадий, завершающихся развитием симптомокомплекса, характерного для РА. Однако характер взаимодействия факторов внешней среды, генетической предрасположенности и иммунных механизмов, определяющих переход от стадии к стадии, варианты прогрессирования, характер и выраженность внесуставных (системных) проявлений и риск коморбидных заболеваний, до конца не ясен и в настоящее время является предметом интенсивных исследований. Среди патогенетических механизмов развития РА важное место занимает гиперпродукция аутоантител – ревматоидные факторы (РФ) и антитела к белкам, подвергнутым посттрансляционной модификации (ПТМ) – цитруллинированию, карбамилированию, ацетилиро- ванию и т. д. Развитие иммунного ответа против посттрансляционно модифицированных (в первую очередь цитруллинированных) белков является ключевым патогенетическим механизмом развития РА на всех стадиях заболевания. Новые данные, касающиеся роли АЦБ в развитии боли и костной резорбции в отсутствие воспаления, патогенетически обосновывают существование «преклинической» фазы заболевания, характеризующейся артралгиями и гиперпродукцией аутоантител. В заключение рассматриваются новые возможности профилактики РА в группах риска (АЦБ-позитивная клинически подозрительная артралгия) с использованием метотрексата, анти-В-клеточного препарата ритуксимаба, блокатора костимуляции Т-лимфоцитов абатацепта и др. 

Об авторе

Е. Л. Насонов
ФГБНУ «Научно- исследовательский институт ревматологии им. В.А. Насоновой», Москва; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России, кафедра ревматологии Института профессионального образования, Москва
Россия

научный руководитель

заведующий кафедрой ревматологии

академик РАН, профессор, докт. мед. наук

115522 Москва, Каширское шоссе, 34А

119991 Москва, ул. Трубецкая, 8, стр. 2 



Список литературы

1. Catrina AI, Svensson CI, Malmström V, et al. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Immunol. 2017;13(2):79-86. doi: 10.1038/nrrheum.2016.200

2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-38. doi: 10.1016/S0140- 6736(16)30173-8

3. Gerlag DM, Raza K, van Baarsen LGM, et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann Rheum Dis. 2012;71:638- 41. doi: 10.1136/annrheumdis-2011-200990

4. Mankia K, Emery P. Preclinical rheumatoid arthritis. Progress toward prevention. Arthritis Rheum. 2016;68:779-88. doi: 10.1002/art.39603

5. Leandro M. B cells and rheumatoid factors in autoimmunity. Int J Rheum Dis. 2015;18:379-81. doi: 10.1111/1756-185X.12690

6. Dö rner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11:247. doi: 10.1186/ar2780

7. Cantagrel A, Degboe Y. New autoantibodies associated with rheumatoid arthritis recognize posttranslationally modified selfprotein. Joint Bone Spain. 2016;83:11-7. doi: 10.1016/j.jbspin.2015.10.003

8. Aletaha D, Blü ml S. Therapeutic implications of autoantibodies in rheumatoid arthritis. RMD Open. 2016 May 17;2(1):e000009. doi: 10.1136/rmdopen-2014-000

9. Mastrangelo A, Colasanti T, Barbati C, et al. The role of posttranslational protein modifications in rheumatological diseases: focus on rheumatoid arthritis. J Immunol Res. 2015;2015:Article ID 712490, 10 p. doi: 10.1155/2015/712490

10. Darrah E, Andrade F. Citrullination, and carbamylation, and malondialdehyde-acetaldehyde! Oh My! Entering the forest of autoantigen modifications in rheumatoid arthritis. Arthritis Rheum. 2015;67:604-8. doi: 10.1002/art.38970

11. Trouw LA, Rispens T, Toes REM. Beyond citrullination: other post-translation protein modifications in rheumatoid arthritis. Nat Rev Rheumatol. 2017 Published online: 09 March 2017. doi: 10.1038/nrrheum.2017.15

12. Anzilotti C, Pratesi F, Tommasi C, Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev. 2010;9:158-60. doi: 10.1016/j.autrev.2009.06.002

13. Willemze A, Trouw LA, Toes RE, Huizinga TWJ. The influence of ACPA status and characteristics on the course of RA. Nat Rev Rheumatol. 2012;8:114-52. doi: 10.1038/nrrheum.2011;204

14. Klareskof L, Amara K, Malmstrom V. Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2014;26:72-9. doi: 10.1097/BOR.0000000000000016

15. Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007;146:797-808. doi: 10.7326/0003-4819-146-11-200706050- 00008

16. Taylor P, Gartemann J, Hsieh J, Greeden J. A systemic review of serum biomarkers anti-cyclic citrullinated peptide and rheumatoid factor as test for rheumatoid arthritis. Autoimmune Dis. 2011;article ID 815038. doi: 10.4061/2011/815038

17. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569-81. doi: 10.1002/art.27584

18. Jilani AA, Mackworth-Young CG. The role of citrullinated protein antibodies in predicting erosive disease in rheumatoid arthritis: a systemic literature review and meta-analysis. Int J Rheumatol. 2015;Article ID 728610. doi: 10.1155/2015/728610

19. Kuller LH, Mackey RH, Walitt BT, et al. Determinants of mortality among postmenopausal women in the Women's health initiative who report rheumatoid arthritis. Arthritis Rheum. 2014;66:497-507. doi: 10.1002/art.38268

20. Humphreys J, van Nies JAB, Chupping J, et al. Rheumatoid factor and anti-citrullinated protein antibody positivity, but not level, are associated with increased mortality in patients with rheumatoid arthritis: results from two large independent cohort. Arthritis Res Ther. 2014;16:483. doi: 10.1186/s13075-014-0483-3

21. Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptide as autoantigen in rheumatoid arthritis – relevance to treatment. Autoimmune Rev. 2014;13:1114-20. doi: 10.1016/j.autrev.2014.08.012

22. Malmstrom V, Cartina AI, Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Rheumatol. 2017;13(2):79-86. doi: 10.1038/nrrheum.2016.200

23. Yarwood A, Huizinga TWJ, Worthington J. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford). 2016;55(2):199-209. doi: 10.1093/rheumatology/keu323

24. Ioan-Facsinay A, El-Bannoudi H, Scherer H.U, et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann Rheum Dis. 2011;70:188-93. doi: 10.1136/ard.2010.131102

25. Uysal H, Bockermann R, Nandakumar KS, et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J Exp Med. 2009;206:449-62. doi: 10.1084/jem.20081862

26. Amara K, Steen J, Murray F, et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med. 2013;210:445-55. doi: 10.1084/jem.20121486

27. Aho K, Heliovaara M, Maatela J, et al. Rheumatoid factors antedating clinical rheumatoid arthritis. J Rheumatol. 1991;18:1282-4.

28. Aho K, Palosuo T, Heliovaara M, et al. Antifilaggrin antibodies within «normal» range predict rheumatoid arthritis in a linear fashion. J Rheumatol. 2000;27:2743-6.

29. Aho K, von Essen R, Kurki P, et al. Antikeratin antibody and antiperinuclear factor as markers for subclinical rheumatoid disease process. J Rheumatol. 1993;20:1278-81.

30. Del Puente A, Knowler WC, Pettitt DJ, Bennett PH. The incidence of rheumatoid arthritis is predicted by rheumatoid factor titer in a longitudinal population study. Arthritis Rheum. 1988;31:1239-44. doi: 10.1002/art.1780311004

31. Silman AJ, Hennessy E, Ollier B. Incidence of rheumatoid arthritis in a genetically predisposed population. Br J Rheumatol. 1992;31:365-8. doi: 10.1093/rheumatology/31.6.365

32. Majka DS, Deane KD, Parrish LA, et al. Duration of preclinical rheumatoid arthritis-related autoantibody positivity increases in subjects with older age at time of disease diagnosis. Ann Rheum Dis. 2008;67:801-7. doi: 10.1136/ard.2007.076679

33. Chibnik LB, Mandl LA, Costenbader KH, et al. Comparison of threshold cutpoints and continuous measures of anti-cyclic citrullinated peptide antibodies in predicting future rheumatoid arthritis. J Rheumatol. 2009;36:706-11. doi: 10.3899/jrheum.080895

34. Jorgensen KT, Wiik A, Pedersen M, et al. Cytokines, autoantibodies and viral antibodies in premorbid and postdiagnostic sera from patients with rheumatoid arthritis: case-control study nested in a cohort of Norwegian blood donors. Ann Rheum Dis. 2008;67:860-6. doi: 10.1136/ard.2007.073825

35. Rantapaa-Dahlqvist S, Boman K, Tarkowski A, Hallmans G. Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann Rheum Dis. 2007;66:121-3. doi: 10.1136/ard.2006.057331

36. Nielen MM, van Schaardenburg D, Reesink HW, et al. Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Ann Rheum Dis. 2006;65:535-7. doi: 10.1136/ard.2005.040659

37. Rantapaa-Dahlqvist S, de Jong BAW, Berglin E, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 2003;48:2741-9. doi: 10.1002/art.11223

38. Nielen MMJ, van Schaardenburg D, Reesink HW, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 2004;50:380-6. doi: 10.1002/art.20018 9

39. Koppejan H, Trouw LA, Sokolove J, et al. Role of anti-carbamylated protein antibodies compared to anti-citrullinated protein antibodies in indigenous North Americans with rheumatoid arthritis, their first-degree relatives, and healthy controls. Arthritis Rheumatol (Hoboken, NJ). 2016;68:2090-8. doi: 10.1002/art.39664

40. Brink M, Hansson M, Mathsson L, et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis Rheum. 2013;65:899-910. doi: 10.1002/art.37835

41. Nam JL, Hunt L, Hensor EM, Emery P. Enriching case selection for imminent RA: the use of anti-CCP antibodies in individuals with new non-specific musculoskeletal symptoms – a cohort study. Ann Rheum Dis. 2016 Aug;75(8):1452-6. doi: 10.1136/annrheumdis-2015-207871

42. Rakieh C, Nam JL, Hunt L, et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann Rheum Dis. 2015 Sep;74(9):1659-66. doi: 10.1136/annrheumdis-2014-205227

43. Steenbergen HW, Mangnus L, Reijnierse M, et al. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis.van Ann Rheum Dis. 2016 Oct;75(10):1824-30. doi: 10.1136/annrheumdis-2015-208138

44. Van Zanten A, Arends S, Roozendaal C, et al. Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Ann Rheum Dis. 2017. doi: 10.1136/annrheumdid-2016-209991

45. Hensvold AH, Frisell T, Magnusson PKE, et al. How well do ACPA discrimination and predict RA in the general population: a study based on 125090 population-representative Swedish twins. Ann Rherum Dis. 2017;76:119-25. doi: 10.1036/annrgeum dis- 2015-208980

46. Ten Brinck RM, van Steenbergen HW, Verheul MK, et al. The prognostic value of different auto-antibodies for arthritis development in patients with clinically suspect arthralgia. Presented at: ACR/ARHP Annual Meeting; November 11-16, 2016; Washington D.C. Abstract #1035.

47. Terao C, Ohmura K, Ikari K, et al. Effects of smoking and shared epitope on the production of anti-citrullinated peptide antibody in a Japanese adult population. Arthritis Care Res. 2014;66:1818- 27. doi: 10.1002/acr.22385

48. Hensvold AH, Magnusson PK, Joshua V, et al. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann Rheum Dis. 2015;74:375-80. doi: 10.1136/annrheumdis-2013-203947

49. Rö nnelid J, Wick MC, Lampa J, et al. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: anti-CP status predicts worse disease activity and greater radiological progression. Ann Rheum Dis. 2005;64:1744-9. doi: 10.1136/ard.2004.033571

50. Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading: mechanism and contribution to autoimmune diseases. Immunol Let. 2015;163:56-68. doi: 10.1016/j.imlet.2014.11.001

51. Van de Stadt LA, de Koning MHMT, van de Stadt RJ, et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 2011;63:3226-33. doi: 10.1002/art.30537

52. Van de Stadt LA, van der Horst AR, de Koning MHMT, et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann Rheum Dis. 2011;70:128-33. doi: 10.1136/ard.2010.132662

53. Suwannalai P, van de Stadt LA, Radner H, et al. Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 2012;64:1323-8. doi: 10.1002/art.33489

54. Van der Woude D, Rantapaa-Dahlqvist S, Ioan-Facsinay A, et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis. 2010;69:1554-61. doi: 10.1136/ard.2009.124537

55. Willemze A, Shi J, Mulder M, et al. The concentration of anticitrullinated protein antibodies in serum and synovial fluid in relation to total immunoglobulin concentrations. Ann Rheum Dis. 2013;72:1059-63. doi: 10.1136/annrheumdis-2012-202747

56. Ioan-Facsinay A, Willemze A, Robinson DB, et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 2008;58:3000-8. doi: 10.1002/art.23763

57. Kokkonen H, Mullazehi M, Berglin E, et al. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther. 2011;13:R13. doi: 10.1186/ar3237

58. Van der Woude D, Syversen SW, van der Voort EI, et al. The ACPA isotype profile reflects long-term radiographic progression in rheumatoid arthritis. Ann Rheum Dis. 2010;69:1110-6. doi: 10.1136/ard.2009.116384

59. Goulabchand R, Vincent T, Batteux F, et al. Impact of autoantibody glycosylation in autoimmune disease. Autoimmune Rev. 2014;13:742-50. doi: 10.1016/j.autrev.2014.02.005

60. Scherer HU, Wang J, Toes RE, et al. Immunoglobulin 1 (IgG1) Fc-glycosylation profiling of anti-citrullinated peptide antibodies from human serum. Proteomics Clin Appl. 2009;3:106-15. doi: 10.1002/prca.200800098

61. Scherer HU, van der Woude D, Ioan-Facsinay A, et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 2010;62:1620-9. doi: 10.1002/art.27414

62. Rombouts Y, Ewing E, van de Stadt LA, et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis. 2015;74:234-41. doi: 10.1136/annrheumdis-2013- 203565

63. Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Ann Rev Immunol. 2007;25:21-50. doi: 10.1146/annurev.immunol.25.022106.141702

64. Stadlmann J, Pabst M, Altmann F. Analytical and functional aspects of antibody sialylation. J Clin Immunol. 2010;30:15-9. doi: 10.1007/s10875-010-9409-2

65. Koning F, Thomas R, Rossjohn J, Toes RE. Coeliac disease and rheumatoid arthritis: simmilar mechanisms, different antigens. Nat Rev Rheumatol. 2015;11:450-61. doi: 10.1038/nrrheum.2015.59

66. Clavel C, Nogueira L, Laurent L, et al. Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 2008;58:678-88. doi: 10.1002/art.23284

67. Sokolove J, Zhao X, Chandra PE, Robinson WH. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcgamma receptor. Arthritis Rheum. 2011;63:53-62. doi: 10.1002/art.30081

68. Sohn DH, Rhodes C, Onuma K, et al. Local joint inflammation and histone citrullination in a murine model of the transition from preclinical autoimmunity to inflammatory arthritis. Arthritis Rheum. 2015;67:2877-87. doi: 10.1002/art.39283

69. Zhu W, Li X, Fang S, et al. Anti-citrullinated protein antibodies induce macrophage subset disequilibrium in RA patients. Inflammation. 2015;38:2067-75. doi: 10.1007/s10753-015- 0188-z

70. Sokolove J, Johnson DS, Lahey LJ, et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheum. 2014;66:813-21. doi: 10.1002/art.38307

71. Laurent L, Anquetil F, Clavel C, et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74:1425-31. doi: 10.1136/annrheumdis-2013-204543

72. Anquetil F, Clavel C, Offer G, et al. IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anticitrullinated protein autoantibodies. J Immunol. 2015;194:3664-74. doi: 10.4049/jimmunol.1402334

73. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5:178ra40. doi: 10.1126/scitranslmed.3005580

74. Sur Chowdhury C, Giaglis S, Walker UA, et al. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther. 2014;16:R122. doi: 10.1186/ar4579

75. Trouw LA, Haisma EM, Levarht EW, et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 2009;60:1923-31. doi: 10.1002/art.24622

76. Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122:1791-802. doi: 10.1172/JCI60975

77. Krishnamurthy A, Joshua V, Haj Hensvold A, et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis. 2016;75:721-9. doi: 10.1136/annrheumdis- 2015-208093

78. Wigerblad G, Bas DB, Fernades-Cerqueira C, et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann Rheum Dis. 2016;75:730-8. doi: 10.1136/annrheumdis- 2015-208094

79. Suurmond J, Rivellese F, Dorjee AL, et al. Toll-like receptor triggering augments activation of human mast cells by anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74:1915-23. doi: 10.1136/annrheumdis-2014-205562

80. Habets KL, Trouw LA, Levarht EW, et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther. 2015;17:209. doi: 10.1186/s13075- 015-0665-7

81. Kuhn KA, Kulik L, Tomooka B, et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest. 2006;116:961-73. doi: 10.1172/JCI25422

82. Ho PP, Lee LY, Zhao X, et al. Autoimmunity against fibrinogen mediates inflammatory arthritis in mice. J Immunol. 2010;184:379-90. doi: 10.4049/jimmunol.0901639

83. Dwivedi N, Radic M. Citrullination of autoantigens implicated NETosis in the induction of autoimmunity. Ann Rheum Dis. 2014;73:483-91. doi: 10.1136/annrheumdis-2013-203844

84. Harre U, Lang SC, Pfeifle R, et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone lose. Nat Communocation. 2015. doi: 10.1038/ncomms7651

85. Kleyer A, Finsel S, Rech J, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73:854-60. doi: 10.1136/annrhgeumdis-2012-202958

86. Bugatt S, Bogliolo L,Vitolo B, et al. Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis Arthritis Res Ther. 201618:226. doi: 10.1186/s13075- 016-1116-9

87. Titcombe PJ, Amara K, Barsness LO, et al. Citrullinated self antigen-specific blood B cells carry cross reactive immunoglobulins with effector potential. Ann Rheum Dis. 2016;75 Suppl 1:A28- A29. doi: 10.1136/annrheumdis-2016-209124.68

88. Zhang ZJ, Cao DL, Zhang X, et al. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain. 2013;154:2185-97. doi: 10.1016/j.pain.2013.07.002

89. Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(7):415-29. doi: 10.1038/nrrheum.2015.53

90. Pfeifle R, Rothe T, Ipseiz N, et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol. 2017;18:104-13. doi: 10.1038/ni.3579

91. Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86 [Nasonov EL. New possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases: a focus on inhibitors of interleukin-17. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(1):68-86. (In Russ.)]. doi: 10.14412/1995-4484- 2017-68-86

92. Fasching P, Stradner M, Graninger W, et al. Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules. 2017;22(1):134. doi: 10.3390/molecules22010134

93. Ajeganova S, van Steenbergen HW, Verheul MK, et al. The association between anti-carbamylated protein (anti-CarP) antibodies and radiographic progression in early rheumatoid arthritis: a study exploring replication and the added value to ACPA and rheumatoid factor. Ann Rheum Dis. 2017;76(1):112-8. doi: 10.1136/annrheumdis-2015-208870

94. Shi J, van de Stadt LA, Levarth EWN, et al. Anti-carbamylated protein antibodies are present in arthralgia patients and predict the development of rheumatoid arthritis. Arthritis Rheum. 2013;65:911-5. doi: 10.1002/art.37830

95. Harris ML, Darrah E, Lam GK, et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 2008;58(7):1958-67. doi: 10.1002/art.23596

96. Kolfenbach JR, Deane KD, Derber LA, et al. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 2010;62(9):2633-9. doi: 10.1002/art.27570

97. Gan RW, Trouw LA, Shi J, et al. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J Rheumatol. 2015;42:572-9. doi: 10.3899/jrheum.140767

98. Kokkonen H, Soderstrom I, Rocklov J, et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62:383-91. doi: 10.1002/art.27186

99. Deane KD, O'Donnell CI, Hueber W, et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 2010;62(11):3161-72. doi: 10.1002/art.27638

100. Hughes-Austin JM, Deane KD, Derber LA, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann Rheum Dis. 2013;72(6):901-7. doi: 10.1136/annrheumdis-2012-201505

101. Barra L, Summers K, Bell D, Cairns E. Serum Cytokine Profile of Unaffected First-degree Relatives of Patients with Rheumatoid Arthritis. J Rheumatol. 2014;4 (2):280-5. doi: 10.3899/jrheum.130539

102. Chalan P, Bijzet J, van den Berg A, et al. Analysis of serum immune markers in seropositive and seronegative rheumatoid arthritis and in high-risk seropositive arthralgia patients. Sci Peport. 2016;6:26021. doi: 10.1038/srep26021

103. Masi AT, Rehman AA, Elmore KB, Aldag JC. Serum acute phase protein and inflammatory cytokine network correlations: comparison of a pre-rheumatoid arthritis and non-rheumatoid arthritis community cohort. J Innate Immun. 2013;5:100-13. doi: 10.1159/000345700

104. Maksymowych WP, Naides SJ, Bykerk V, et al. Serum 14-3-3eta is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis. J Rheumatol. 2014;41(11):2104-13. doi: 10.3899/jrheum.131446

105. Van Heusden GP. 14-3-3 proteins: regulators of numerous eukaryotic proteins. IUBMB Life. 2005;57(9):623-9. doi: 10.1080/15216540500252666

106. Hitchon CA, Smolik I, Meng X, et al. Serum 14-3-3eta are elevated in indigenous North Americans with rheumatoid arthritis and may predict imminent synovitis in their in at-risk first degree relatives. Arthritis Rheum. 2015;67(10).

107. Van Beers-Tas MH, Marotta A, Boers M, et al. A prospective cohort study of 14-3-3η in ACPA and/or RF-positive patients with arthralgia. Arthritis Res Ther. 2016;18:76. doi: 10.1186/s13075-016-0975-4

108. Issa SF, Duer A, Ostergaard M, et al. Increased galectin-3 may serve as a serologic signature of pre-rheumatoid arthritis while markers of synovitis and cartilage do not differ between early undifferentiated arthritis subsets. Arthritis Res Ther. 2017;26;19(1):80. doi: 10.1186/s13075-017-1282-4

109. Tan YC, Kongpachith S, Blum LK, et al. Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis Rheum. 2014;66:2706-15. doi: 10.1002/art.38754

110. Li S, Yu Y, Yue Y, et al. Autoantibodies from single circulating plasmablasts react with citrullinated antigens and Porphyromonas gingivalis in rheumatoid arthritis. Arthritis Rheum. 2016;68:614- 26. doi: 10.1002/art.39455

111. Corsiero E, Bombardieri M, Carlotti E, et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2015;75:1866-75. doi: 10.1136/annrheumdis-2015-208356

112. Kerkman PF, Kempers AC, van der Voort EI, et al. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anticitrullinated protein antibodies. Ann Rheum Dis. 2016;75(12):2201-7. doi: 10.1136/annrheumdis-2015-208554 2016

113. De Hair MJH, van de Sande MGH, Ramwadhdoebe TH, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheum (Hoboken, NJ). 2014;66:513-22. doi: 10.1002/art.38273

114. Van Baarsen LGM, de Hair MJH, Ramwadhdoebe TH, et al. The cellular composition of lymph nodes in the earliest phase of inflammatory arthritis. Ann Rheum Dis. 2013;72:1420-4. doi: 10.1136/annrheumdis-2012-202990

115. Ramwadhdoebe TH, Hahnlein J, Maijer KI, et al. Lymph node biopsy analysis reveals an altered immunoregulatory balance already during the at-risk phase of autoantibody positive rheumatoid arthritis. Eur J Immunol. 2016;46:2812-21. doi: 10.1002/eji.201646393

116. Ramwadhdoebe TH, Hahnlein J, van Kuijk BJ, et al. Human lymph-node CD8(+) T cells display an altered phenotype during systemic autoimmunity. Clin Transl Immunol. 2016;5:e67. doi: 10.1038/cti.2016.8

117. Lü bbers J, van Beers-Tas MH, Vosslamber S, et al. Changes in peripheral blood lymphocyte subsets during arthritis development in arthralgia patients. Arthritis Res Ther. 2016 Sep 14;18(1):205. doi: 10.1186/s13075-016-1102-2

118. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36-49. doi: 10.1038/nri3581

119. Van Baarsen LG, Bos WH, Rustenburg F, et al. Gene expression profiling in autoantibody-positive patients with arthralgia predicts development of arthritis. Arthritis Rheum. 2010;62:694-704. doi: 10.1002/art.27294

120. Lubbers J, Vosslamber S, van de Stadt LA, et al. B cell signature contributes to the prediction of RA development in patients with arthralgia. Ann Rheum Dis. 2015;74:1786-8. doi: 10.1136/annrheumdis-2015-207324

121. Lubbers J, Brink M, van de Stadt LA, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72:776-80. doi: 10.1136/annrheumdis-2012- 202753

122. Castaneda-Delgado JE, Bastian-Hernandez Y, Macias-Segura N, et al. Type I interferon gene response is increased in early and established rheumatoid arthritis and correlates with autoantibody production. Front Immunol. 2017;8:285. doi: 10.3389/fimmu.2017.00285

123. Hunt L, Hensor EM, Nam J, et al. T cell subsets: an immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann Rheum Dis. 2016;75:1884-9. doi: 10.1136/annrheumdis-2015-207991

124. Chalan P, Bijzet J, Kroesen B-J, et al. Altered natural killer cell subsets in seropositive arthralgia and early rheumatoid arthritis are associated with autoantibody status. J Rheumatol. 2016;43(6):1008-16. doi: 10.3899/jrheum.150644

125. Rodriguez-Carrio J, Hahnlein JS, Ramwadhdoebe TH, et al. Brief report: altered innate lymphoid cell subsets in human lymph node biopsy specimens obtained during the at-risk and earliest phases of rheumatoid arthritis. Arthritis Rheum (Hoboken, NJ). 2017;69:70-6. doi:10.1002/art.39811

126. Shikhagaie MM, Germar K, Bal SM, et al. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases. Nat Rev Rheumatol. 2017;13(3):164-73. doi: 10.1038/nrrheum.2016.218

127. Makrygiannakis D, Hermansson M, Ulfgren A-K, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis. 2008;67:1488-92. doi: 10.1136/ard.2007.075192

128. Stolt P, Bengtsson C, Nordmark B, et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis. 2003;62:835-41. doi: 10.1136/ard.62.9.835

129. Lugli EB, Correia RESM, Fischer R, et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res Ther. 2015;17:9. doi: 10.1186/s13075-015-0520-x

130. Demoruelle MK, Weisman MH, Simonian PL, et al. Brief report: airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity? Arthritis Rheum. 2012;64:1756-61. doi: 10.1002/art.34344

131. Willis VC, Demoruelle MK, Derber LA, et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 2013;65:2545-54. doi: 10.1002/art.38066. doi: 10.1002/art.38066

132. Janssen KMJ, de Smit MJ, Brouwer E, et al. Rheumatoid arthritis-associated autoantibodies in non-rheumatoid arthritis patients with mucosal inflammation: a case-control study. Arthritis Res Ther. 2015;17:174. doi: 10.1186/s13075-015-0690-6

133. Reynisdottir G, Olsen H, Joshua V, et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann Rheum Dis. 2016;75:1722-7. doi: 10.1136/annrheumdis-2015-208216

134. Ytterberg AJ, Joshua V, Reynisdottir G, et al. Shared immunological targets in the lungs and joints of patients with rheumatoid arthritis: identification and validation. Ann Rheum Dis. 2015;74:1772-7. doi: 10.1136/annrheumdis-2013-204912

135. Kinslow JD, Blum LK, Deane KD, et al. IgA plasmablasts are elevated in subjects at risk for future rheumatoid arthritis. Arthritis Rheum. 2016;68:2372-83. doi: 10.1002/art.39771

136. Roos K, Martinsson K, Ziegelasch M, et al. Circulating secretory IgA antibodies against cyclic citrullinated peptides in early rheumatoid arthritis associate with inflammatory activity and smoking. Arthritis Res Ther. 2016;23;18(1):119. doi: 10.1186/s13075-016-1014-1

137. Bas S, Genevay S, Meyer O, Gabay C. Anti-cyclic citrullinated peptide antibodies, IgM and IgA rheumatoid factors in the diagnosis and prognosis of rheumatoid arthritis. Rheumatology. 2003;42:677-80. doi: 10.1093/rheumatology/keg184

138. Svä rd A, Skogh T, Alfredsson L, et al. Associations with smoking and shared epitope differ between IgA- and IgG-class antibodies to cyclic citrullinated peptides in early rheumatoid arthritis. Arthritis Rheum. 2015;67:2032-7. doi: 10.1002/art.39170

139. Watkin LB, Jessen B, Wiszniewski W, et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmunemediated lung disease and arthritis. Nat Genet. 2015;47:654-60. doi: 10.1038/ng.3279

140. Nesse W, Dijkstra PU, Abbas F, et al. Increased prevalence of cardiovascular and autoimmune diseases in periodontitis patients: a cross-sectional study. J Periodontol. 2010;81:1622-8. doi: 10.1902/jop.2010.100058

141. Dissick A, Redman RS, Jones M, et al. Association of periodontitis with rheumatoid arthritis: a pilot study. J Periodontol. 2010;81:223-30. doi: 10.1902/jop.2009.090309

142. De Smit M, Westra J, Vissink A, et al. Periodontitis in established rheumatoid arthritis patients: a cross-sectional clinical, microbiological and serological study. Arthritis Res Ther. 2012;14:R222. doi: 10.1186/ar4061

143. Nesse W, Westra J, van der Wal JE, et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J Clin Periodontol. 2012;39:599-607. doi: 10.1111/j.1600- 051X.2012.01885.x

144. Harvey GP, Fitzsimmons TR, Dhamarpatni AASSK, et al. Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J Periodontal Res. 2013;48:252-61. doi: 10.1111/jre.12002

145. Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662-72. doi: 10.1002/art.27552

146. Wegner N, Lundberg K, Kinloch A, et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev. 2010; 233:34-54. doi: 10.1111/j.0105-2896.2009.00850.x

147. Mikuls TR, Thiele GM, Deane KD, et al. Porphyromonas gingivalis and disease-related autoantibodies in individuals at increased risk of rheumatoid arthritis. Arthritis Rheum. 2012;64:3522-30. doi: 10.1002/art.34595

148. Bello-Gualtero JM, Lafaurie GI, Hoyos LX, et al. Periodontal disease in individuals with a genetic risk of developing arthritis and early rheumatoid arthritis: a cross-sectional study. J Periodontol. 2016;87:346-56. doi: 10.1902/jop.2015.150455

149. Quirke A-M, Lugli EB, Wegner N, et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann Rheum Dis. 2014;73:263-9. doi: 10.1136/annrheumdis-2012-202726

150. Fisher BA, Cartwright AJ, Quirke A-M, et al. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case-control study. BMC Musculoskelet Disord. 2015;16:331. doi: 10.1186/s12891-015-0792-y

151. Eriksson K, Nise L, Kats A, et al. Prevalence of periodontitis in patients with established rheumatoid arthritis: a Swedish population based case-control study. PLoS ONE. 2016;11:e0155956. doi: 10.1371/journal.pone.0155956

152. Kharlamova N, Jiang X, Sherina N, et al. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking, and risk genes in rheumatoid arthritis etiology. Arthritis Rheum. 2016;68:604-13. doi: 10.1002/art.39491

153. Konig MF, Abusleme L, Reinholdt J, et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med. 2016;8(369):369ra176. doi: 10.1126/scitranslmed.aaj1921

154. Ling S, Cline EN, Haug TS, et al. Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum. 2013;65(3):618-26. doi: 10.1002/art.37814

155. Chen B, Sun L, Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun. 2017. pii: S0896-8411(17)30178-6. doi: 10.1016/j.jaut.2017.03.009

156. Diamanti AP, Manuela Rosado M, Lagana B, D'Amelio R. Microbiota and chronic inflammatory arthritis: an interwoven link. J Transl Med. 2016;14(1):233. doi: 10.1186/s12967-016- 0989-3

157. Wu X, He B, Liu J, et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int J Mol Sci. 2016;17(3):431. doi: 10.3390/ijms17030431

158. Scher JU, Littman DR, Abramson SB. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheum. 2016;68(1):35-45. doi: 10.1002/art.39259

159. Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. doi: 10.7554/eLife.01202

160. Pianta A, Arvikar S, Strle K, et al. Evidence for immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheum (Hoboken, NJ). 2016. doi: 10.1002/art.40003

161. Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895-905. doi: 10.1038/nm.3914

162. MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43(1):30-7. doi: 10.1002/1529-0131(200001)43:13.0.co;2-b

163. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30:1205-13. doi: 10.1002/art.1780301102

164. Huizinga TWJ, Amos CI, van der Helm-van Mil AHM, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 2005;52:3433-8. doi: 10.1002/art.21385

165. Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44:291-6. doi: 10.1038/ng.1076

166. Scally SW, Petersen J, Law SC, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med. 2013;210:2569-82. doi: 10.1084/jem.20131241

167. De Almeida DE, Ling S, Holoshitz J. New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Lett. 2011;585(23):3619-26. doi: 10.1016/j.febslet.2011.03.035

168. Bos WH, Ursum J, de Vries N, et al. The role of the shared epitope in arthralgia with anti-cyclic citrullinated peptide antibodies (anti-CCP), and its effect on anti-CCP levels. Ann Rheum Dis. 2008;67:1347-50. doi: 10.1136/ard.2008.089953

169. Tracy A, Buckley CD, Raza K. Pre-symptomatic autoimmunity in rheumatoid arthritis: when does the disease start? Semin Immunopathol. 2017 Mar 23. doi: 10.1007/s00281-017-0620-6

170. Snir O, Rieck M, Gebe JA, et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum. 2011;63:2873-83. doi: 10.1002/art.30445

171. James EA, Rieck M, Pieper J, et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheum. 2014;66:1712-22. doi: 10.1002/art.38637

172. Padyukov L, Silva C, Stolt P, et al. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 2004;50:3085-92. doi: 10.1002/art.20553

173. Pedersen M, Jacobsen S, Garred P, et al. Strong combined geneenvironment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark. Arthritis Rheum. 2007;56:1446-53. doi: 10.1002/art.22597

174. Fisher BA, Bang S-Y, Chowdhury M, et al. Smoking, the HLADRB1 shared epitope and ACPA fine-specificity in Koreans with rheumatoid arthritis: evidence for more than one pathogenic pathway linking smoking to disease. Ann Rheum Dis. 2014;73:741-7. doi: 10.1136/annrheumdis-2012-202535

175. Lee H-S, Irigoyen P, Kern M, et al. Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum. 2007;56:1745-53. doi: 10.1002/art.22703

176. Van Heemst J, Hensvold AH, Jiang X, et al. Protective effect of HLA-DRB1*13 alleles during specific phases in the development of ACPA-positive RA. Ann Rheum Dis. 2016;75:1891-8. doi: 10.1136/annrheumdis-2015-207802

177. Van Heemst J, Jansen DTSL, Polydorides S, et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLAbased protection against rheumatoid arthritis. Nat Commun. 2015;6:6681. doi: 10.1038/ncomms7681

178. Diogo D, Okada Y, Plenge RM. Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: recent findings and challenges. Curr Opin Rheumatol. 2014;26(1):85-92. doi: 10.1097/bor.0000000000000012

179. Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol. 2014;15:875-83. doi: 10.1038/ni.2958

180. Menard L, Saadoun D, Isnardi I, et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest. 2011;121:3635-44. doi: 10.1172/JCI45790

181. Chang HH, Liu GY, Dwivedi N, et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight. 2016;1(17):e90045. doi: 10.1172/jci.insight.90045

182. Kallberg H, Padyukov L, Plenge RM, et al. Epidemiological Investigation of Rheumatoid Arthritis study group. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet. 2007;80:867-75. doi: 10.1086/516736

183. Yang Z, Shen Y, Oishi H, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med. 2016;8:331ra38. doi: 10.1126/scitranslmed.aad7151

184. Di Giuseppe D, Crippa A, Orsini N, Wolk A. Fish consumption and risk of rheumatoid arthritis: a dose-response meta-analysis. Arthritis Res Ther. 2014;16:446. doi: 10.1186/s13075-014-0446-8

185. Gan RW, Demoruelle MK, Deane KD, et al. Omega-3 fatty acids are associated with a lower prevalence of autoantibodies in shared epitope-positive subjects at risk for rheumatoid arthritis. Ann Rheum Dis. 2017;76:147-52. doi: 10.1136/annrheumdis-2016- 209154

186. Goldberg RJ, Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain. 2007;129:210-23. doi: 10.1016/j.pain.2007.01.020

187. Mas E, Croft KD, Zahra P, et al. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012;58:1476-84. doi: 10.1373/clinchem.2012.190199

188. Arnardottir HH, Dalli J, Norling LV, et al. Resolvin D3 is dysregulated in arthritis and reduces arthritic inflammation. J Immunol. 2016;197:2362-8. doi: 10.4049/jimmunol.1502268

189. McAllen RM, Cook AD, Khiew HW, et al. The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Res Ther. 2015;17:87. doi: 10.1186/s13075-015- 0597-2

190. Koopman FA, Tang MW, Vermeij J, et al. Autonomic dysfunction precedes development of rheumatoid arthritis: a prospective cohort study. EBioMedicine. 2016;6:231-7. doi: 10.1016/j.ebiom.2016.02.029

191. Liu Z, Han B, Li P, et al. Activation of alpha7nAChR by nicotine reduced the Th17 response in CD4(+)T lymphocytes. Immunol Investig. 2014;43:667-74. doi: 10.3109/08820139.2014.914532

192. Baez-Pagan CA, Delgado-Velez M, Lasalde-Dominicci JA. Activation of the macrophage alpha7 nicotinic acetylcholine receptor and control of inflammation. J NeuroImmune Pharmacol. 2015;10:468-76. doi: 10.1007/s11481-015-9601-5

193. Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:8284-9. doi: 10.1073/pnas.1605635113

194. Van Steenbergen HW, Huizinga TW, van der Helm-van Mil AH. Review: the preclinical phase of rheumatoid arthritis: what is acknowledged and what needs to be assessed? Arthritis Rheum. 2013;65:2219-32. doi: 10.1002/art.38013

195. Raza K, Gerlag DM. Preclinical inflammatory rheumatic diseases: an overview and relevant nomenclature. Rheum Dis Clin N Am. 2014;40:569-80. doi: 10.1016/j.rdc.2014.07.001

196. Stack RJ, van Tuyl LH, Sloots M, et al. Symptom complexes in patients with seropositive arthralgia and in patients newly diagnosed with rheumatoid arthritis: a qualitative exploration of symptom development. Rheumatology (Oxford). 2014;53(9):1646- 53. doi: 10.1093/rheumatology/keu159

197. Bos WH, Wolbink GJ, Boers M, et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann Rheum Dis. 2010;69:490-4. doi: 10.1136/ard.2008.105759

198. Van de Stadt LA, Witte BI, Bos WH, van Schaardenburg D. A prediction rule for the development of arthritis in seropositive arthralgia patients. Ann Rheum Dis. 2013;72:1920-6. doi: 10.1136/annrheumdis-2012-202127

199. Van der Helm-van Mil AH, le Cessie S, van Dongen H, et al. A prediction rule for disease outcome in patients with recentonset undifferentiated arthritis: how to guide individual treatment decisions. Arthritis Rheum. 2007;56:433-40. doi: 10.1002/art.22380

200. De Rooy DP, van der Linden MP, Knevel R, et al. Predicting arthritis outcomes – what can be learned from the Leiden Early Arthritis Clinic? Rheumatology (Oxford). 2011;50:93-100. doi: 10.1093/rheumatology/keq230

201. Van Steenbergen HW, van Nies JA, Huizinga TW, et al. Characterising arthralgia in the preclinical phase of rheumatoid arthritis using MRI. Ann Rheum Dis. 2015;74:122-32. doi: 10.1136/annrheumdis-2014-205522

202. Van Steenbergen HW, Aletaha D, Beaart-van de Voorde LJJ. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann Rheum Dis. 2017;76(3):491-6. doi: 10.1136/annrheumdis-2016-209846

203. Van der Linden MP, le Cessie S, Raza K, et al. Long-term impact of delay in assessment of patients with early arthritis. Arthritis Rheum. 2010;62:3537-46. doi: 10.1002/art.2769

204. Finckh A, Liang MH, van Herckenrode CM, et al. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: a meta-analysis. Arthritis Care Res. 2006;55:864-72. doi: 10.1002/art.22353

205. Van Nies JA, Krabben A, Schoones JW, et al. What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review. Ann Rheum Dis. 2014;73:861-70. doi: 10.1136/annrheumdis-2012- 203130

206. Bos WH, Dijkmans BA, Boers M, et al. Effect of dexamethasone on autoantibody levels and arthritis development in patients with arthralgia: a randomised trial. Ann Rheum Dis. 2010;69:571-4. doi: 10.1136/ard.2008.105767

207. Saleem B, Mackie S, Quinn M, et al. Does the use of tumour necrosis factor antagonist therapy in poor prognosis, undifferentiated arthritis prevent progression to rheumatoid arthritis? Ann Rheum Dis. 2008;67:1178-80. doi: 10.1136/ard.2007.084269

208. Emery P, Durez P, Dougados M, et al. Impact of T-cell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial). Ann Rheum Dis. 2010;69:510-6. doi: 10.1136/ard.2009.119016

209. Machold KP, Landewe R, Smolen JS, et al. The Stop Arthritis Very Early (SAVE) trial, an international multicentre, randomised, double-blind, placebo-controlled trial on glucocorticoids in very early arthritis. Ann Rheum Dis. 2010;69:495-502. doi: 10.1136/ard.2009.122473

210. Verstappen SM, McCoy MJ, Roberts C, et al. Beneficial effects of a 3-week course of intramuscular glucocorticoid injections in patients with very early inflammatory polyarthritis: results of the STIVEA trial. Ann Rheum Dis. 2010;69:503-9. doi: 10.1136/ard.2009.119149

211. Van Dongen H, van Aken J, Lard LR, et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2007;56(5):1424-32. doi: 10.1002/art.22525

212. Gerlag DM, Safy M, Maijer KI, et al. A Single Infusion of Rituximab Delays the Onset of Arthritis in Subjects at High Risk of Developing RA [abstract]. Arthritis Rheum. 2016;68 Suppl 10. Available from: http://acrabstracts.org/abstract/a-single-infusionof-rituximab-delays-the-onset-of-arthritis-in-subjects-at-highrisk-of-developing-ra/. Accessed May 20, 2017.

213. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315-24. doi: 10.1002/art.1780310302

214. Van Aken J, Heimans L, Gillet-van Dongen H, et al. Five-year outcomes of probable rheumatoid arthritis treated with methotrexate or placebo during the first year (the PROMPT study). Ann Rheum Dis. 2014;73(2):396-400. doi: 10.1136/annrheumdis-2012-202967

215. Burgers LE, Allaart CF, Huizinga TWJ, et al. Brief Report: Clinical Trials Aiming to Prevent Rheumatoid Arthritis Cannot Detect Prevention Without Adequate Risk Stratification: A Trial of Methotrexate Versus Placebo in Undifferentiated Arthritis as an Example. Arthritis Rheum. 2017;69(5):926-31. doi: 10.1002/art.40062

216. Насонов ЕЛ. Метотрексат при ревматоидном артрите – 2015: новые факты и идеи. Научно-практическая ревматология. 2015;53(4):421-33 [Nasonov EL. Methotrexate in rheumatoid arthritis – 2015: new facts and ideas. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2015;53(4):421-33 (In Russ.)]. doi: 10.14412/1995- 4484-2015-421-433

217. Dekkers JS, Schoones JW, Huizinga TW, et al. Possibilities for preventive treatment in rheumatoid arthritis? Lessons from experimental animal models of arthritis: a systematic literature review and meta-analysis. Ann Rheum Dis. 2017;76(2):458-67. doi: 10.1136/annrheumdis-2016-209830

218. Kohler L, Kirchoff T, Jablonka A, et al. Incidence of rheumatoid arthritis onset in patients with arthralgia and anti-citrullinated peptide antibody positivity; pilor study on effectiveness of hydroxychloroquine treatment. Rheumatology (Sunnyvale). 2016;6:2. doi: 10.4172/2161-1149.1000196

219. Gerlag DM, Norris JM, Tak PP. Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment. Rheumatology (Oxford). 2016;55(4):607-14. doi: 10.1093/rheumatology/kev347

220. Deane KD, Striebich CC, Holers VM. Editorial: Prevention of Rheumatoid Arthritis: Now Is the Time, but How to Proceed? Arthritis Rheum. 2017;69:873-7. doi: 10.1002/art.40061

221. National Institute of Allergy and Infectious Diseases, sponsor. Strategy for the prevention of onset of clinically-apparent rheumatoid arthritis (StopRA). ClinicalTrials.gov identifier: NCT02603146; 2015.

222. Guy's and St. Thomas' NHS Foundation Trust, sponsor. Arthritis prevention in the pre-clinical phase of RA with abatacept. ISRCTN 46017566; 2014.

223. Academic Medical Center, Division of Clinical Immunology and Rheumatology, sponsor. Prevention of clinically manifest rheumatoid arthritis by B cell directed therapy in the earliest phase of the disease (PRAIRI). NTR 2442; 2010.


Для цитирования:


Насонов Е.Л. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. https://doi.org/10.14412/1995-4484-2017-277-294

For citation:


Nasonov E.L. PROBLEMS OF RHEUMATOID ARTHRITIS IMMUNOPATHOLOGY: EVOLUTION OF THE DISEASE. Rheumatology Science and Practice. 2017;55(3):277-294. (In Russ.) https://doi.org/10.14412/1995-4484-2017-277-294

Просмотров: 313


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)