Preview

Научно-практическая ревматология

Расширенный поиск

Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы

https://doi.org/10.14412/1995-4484-2019-8-16

Полный текст:

Аннотация

Несмотря на большие успехи в диагностике и лечении иммуновоспалительных ревматических заболеваний (ИВРЗ), приведшие к существенному улучшению прогноза у многих пациентов, фундаментальные медицинские проблемы этой патологии – восстановление качества жизни и снижение летальности до популяционного уровня – далеки от разрешения. Это послужило мощным стимулом к изучению новых подходов к фармакотерапии ИВРЗ, один из которых связан с использованием низкомолекулярных химически синтезированных препаратов, ингибирующих внутриклеточные «сигнальные» молекулы – Янус-киназы (JAK), так называемые Jakinibs. Рассмотрены современные достижения и тенденции, касающиеся применения ингибиторов JAK в лечении ИВРЗ.

Об авторах

Е. Л. Насонов
ФГБНУ «Научноисследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), кафедра ревматологии Института профессионального образования
Россия

115522, Москва, Каширское шоссе, 34А;

2119991, Москва, ул. Трубецкая, 8, стр. 2



А. М. Лила
ФГБНУ «Научноисследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34А



Список литературы

1. Burmester GR, Bijlsma JWJ, Cutolo M, McInnes IB. Managing rheumatic and musculoskeletal diseases – past, present and future. Nat Rev Rheumatol. 2017;13(7):443-8. doi: 10.1038/nrrheum.2017.95

2. Jog NR, James JA. Biomarkers in connective tissue diseases. J Allergy Clin Immunol. 2017;140(6):1473-83. doi: 10.1016/j.jaci.2017.10.003

3. Ivison S, Des Rosiers C, Lesage S, et al. Biomarker-guided stratification of autoimmune patients for biologic therapy. Curr Opin Immunol. 2017;49:56-63. doi: 10.1016/j.coi.2017.09.006

4. Giacomelli R, Afeltra A, Alunno A, et al. Guidelines for biomarkers in autoimmune rheumatic diseases – evidence based analysis. Autoimmun Rev. 2019;18(1):93-106. doi: 10.1016/j.autrev.2018.08.003

5. Smolen JS. Treat-to-target as an approach in inflammatory arthritis. Curr Opin Rheumatol. 2016 May;28(3):297-302. doi: 10.1097/BOR.0000000000000284

6. Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научнопрактическая ревматология. 2018;56(3):263-71 [Nasonov EL, Olyunin YuA, Lila AM. Rheumatoid arthritis: the problems of remission and therapy resistance. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(3):63-271 (In Russ.)]. doi: 10.14412/1995-4484-2018-263-271

7. Perrotta FM, De Socio A, Scriffignano S, Lubrano E. From clinical remission to residual disease activity in spondyloarthritis and its potential treatment implications. Expert Rev Clin Immunol. 2018;14(3):207-13. doi: 10.1080/1744666X.2018.1429918

8. Gossec L, McGonagle D, Korotaeva T, et al. Minimal Disease Activity as a Treatment Target in Psoriatic Arthritis: A Review of the Literature. J Rheumatol. 2018;45(1):6-13. doi: 10.3899/jrheum.170449

9. Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276-89. doi: 10.1038/nrrheum.2015.8

10. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555

11. Giacomelli R, Afeltra A, Alunno A, et al. International consensus: What else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren's syndrome)?: The unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev. 2017;16(9):911-24. doi: 10.1016/j.autrev.2017.07.012

12. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

13. Banerjee S, Biehl A, Gadina M, et al. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs. 2017;77(5):521-46. doi: 10.1007/s40265-017-0701-9

14. Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol. 2018;104(3):499-514. doi: 10.1002/JLB.5RI0218-084R

15. Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-21 [Nasonov EL. New approaches to pharmacotherapy of rheumatoid arthritis: tofacitinib. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(2):209-21 (In Russ.)]. doi: 10.14412/1995-4484-2014-209-221

16. Dhillon S. Tofacitinib: A Review in Rheumatoid Arthritis. Drugs. 2017 Dec;77(18):1987-2001. doi: 10.1007/s40265-017-0835-9

17. Berekmeri A, Mahmood F, Wittmann M, Helliwell P. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018;14(9):719-30. doi: 10.1080/1744666X.2018

18. Veale DJ, McGonagle D, McInnes IB, et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology (Oxford). 2018 Apr 3. doi: 10.1093/rheumatology/key070

19. Cinats A, Heck E, Robertson L. Janus Kinase Inhibitors: A Review of Their Emerging Applications in Dermatology. Skin Therapy Lett. 2018y;23(3):5-9.

20. Soendergaard C, Bergenheim FH, Bjerrum JT, Nielsen OH. Targeting JAK-STAT signal transduction in IBD. Pharmacol Ther. 2018 Jul 23. pii: S0163-7258(18)30122-0. doi: 10.1016/j.pharmthera.2018.07.003

21. Насонов ЕЛ, Абдулганиева ДИ, Файрушина ИФ. Место тофацитиниба в лечении воспалительных заболеваний кишечника. Терапевтический архив. 2019;2 (принята к печати) [Nasonov EL, Abdulganieva DI, Fairushina IF. Place of tofacitinib in the treatment of inflammatory bowel disease. Terapevticheskii Arkhiv. 2019;2 (accepted for printing) (In Russ.)].

22. Hoffman HM, Broderick L. JAK inhibitors in autoinflammation. J Clin Invest. 2018 Jul 2;128(7):2760-2. doi: 10.1172/JCI121526

23. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1551358

24. Kahn JS, Deverapalli SC, Rosmarin DM. JAK-STAT signaling pathway inhibition: a role for treatment of discoid lupus erythematosus and dermatomyositis. Int J Dermatol. 2018;57(8):1007-14. doi: 10.1111/ijd.14064

25. Kerrigan SA, McInnes IB. JAK Inhibitors in Rheumatology: Implications for Paediatric Syndromes? Curr Rheumatol Rep. 2018;20(12):83. doi: 10.1007/s11926-018-0792-7

26. Ruperto N, Brunner HI, Zuber Z, et al. Pharmacokinetic and safety profile of tofacitinib in children with polyarticular course juvenile idiopathic arthritis: results of a phase 1, open-label, multicenter study. Pediatr Rheumatol. 2017;15(1):86.

27. Schwartz DM, Bonelli M, Gadina M, O'Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25-36. doi: 10.1038/nrrheum.2015.167

28. Hammaren HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 2018 Apr 20. pii: S1043-4666(18)30127-3. doi: 10.1016/j.cyto.2018.03.041

29. Smolen JS, Landewe R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960-77. doi: 10.1136/annrheumdis-2016-210715

30. Singh JA, Saag KG, Bridges SL, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheum. 2016;68(1):1-26. doi: 10.1002/art.39480

31. Насонов ЕЛ, редактор. Ревматология. Российские клинические рекомендации. Москва: ГЭОТАР-Медиа; 2017. 456 с. [Nasonov EL, editor. Revmatologiya. Rossiiskie klinicheskie rekomendatsii [Rheumatology. Russian clinical guidelines]. Moscow: GEOTAR-Media; 2017. 456 p. (In Russ.)].

32. Smolen JS, van der Heijde D, Machold KP, et al. Proposal for a new nomenclature of disease-modifying antirheumatic drugs. Ann Rheum Dis. 2014;73(1):3-5. doi: 10.1136/annrheumdis-2013-204317

33. Charles-Schoeman C, Burmester G, Nash P, et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2016;75(7):1293-301. doi: 10.1136/annrheumdis-2014-207178

34. Smolen JS, Aletaha D, Gruben D, et al. Brief Report: Remission Rates With Tofacitinib Treatment in Rheumatoid Arthritis: A Comparison of Various Remission Criteria. Arthritis Rheum. 2017;69(4):728-34. doi: 10.1002/art.39996

35. Strand V, Kavanaugh A, Kivitz AJ, et al. Long-Term Radiographic and Patient-Reported Outcomes in Patients with Rheumatoid Arthritis Treated with Tofacitinib: ORAL Start and ORAL Scan Post-hoc Analyses. Rheumatol Ther. 2018 May 14. doi: 10.1007/s40744-018-0113

36. Odriozola I, Coste CS, Barnetche T, et al. Is There a Specific Effect of Jak-Inhibitors on Pain and Fatigue in Rheumatoid Arthritis? Arthritis Rheum. 2018;70 Suppl 10.

37. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13(4):234-43. doi: 10.1038/nrrheum.2017.23

38. Tanaka Y, Sugiyama N, Toyoizumi S, et al. Modified- versus immediate-release tofacitinib in Japanese rheumatoid arthritis patients: a randomized, phase III, non-inferiority study. Rheumatology (Oxford). 2019;58(1):70-9. doi: 10.1093/rheumatology/key250

39. Mease P, Hall S, Fitzgerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377:1537-50. doi: 10.1056/NEJMoa1615975

40. Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377:1525-36. doi: 10.1056/NEJMoa1615977

41. Nash P, Coates LC, Fleischmann R, et al. Efficacy of Tofacitinib for the Treatment of Psoriatic Arthritis: Pooled Analysis of Two Phase 3 Studies. Rheumatol Ther. 2018;5(2):567-82. doi: 10.1007/s40744-018-0131-5

42. Krueger J, Clark JD, Suarez-Farinas M, et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J Allergy Clin Immunol. 2016;137:1079-90. doi: 10.1016/j.jaci.2015.12.1318

43. Bachelez H, van de Kerkof PC, Strohal R, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386:552-61. doi: 10.1016/S0140-6736(14)62113-9

44. Bissonnette R, Iversen L, Sofen H, et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br J Dermatol. 2015;172:1395-406. doi: 10.1111/bjd.13551

45. Singh JA, Guyatt G, Ogdie A, et al. Special Article: 2018 American College of Rheumatology/National Psoriasis Foundation Guideline for the Treatment of Psoriatic Arthritis. Arthritis Rheum. 2019;71(1):5-32. doi: 10.1002/art.40726

46. Van der Heijde D, Deodhar A, Wei JC, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. 2017;76:1340-7. doi: 10.1136/annrheumdis-2016-210322

47. Maksymowych WP, van der Heijde D, Baraliakos X, et al. Tofacitinib is associated with attainment of the minimally important reduction in axial magnetic resonance imaging inflammation in ankylosing spondylitis patients. Rheumatology (Oxford). 2018;57(8):1390-9. doi: 10.1093/rheumatology/key104

48. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017;390:73-84. doi: 10.1016/S0140-6736(16)31591-4

49. Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. 2018;391(10136):2273-84. doi: 10.1016/S0140-6736(18)30830-4

50. Fernandez-Clotet A, Castro-Poceiro J, Panes J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev Clin Immunol. 2018;14(11):881-92. doi: 10.1080/1744666X.2018.1532291

51. Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol. 2014;54(12):1354-61. doi: 10.1002/jcph.354

52. Kunwar S, Collins CE, Constantinescu F. Baricitinib, a Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Clin Rheumatol. 2018 Jul 13. doi: 10.1007/s10067-018-4199-7

53. Al-Salama ZT, Scott LJ. Baricitinib: A Review in Rheumatoid Arthritis. Drugs. 2018 May;78(7):761-72. doi: 10.1007/s40265-018-0908-4

54. Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. N Engl J Med. 2017;376(7):652-62. doi: 10.1056/NEJMoa1608345

55. Takeuchi T, Genovese MC, Haraoui B, et al. Dose reduction of baricitinib in patients with rheumatoid arthritis achieving sustained disease control: results of a prospective study. Ann Rheum Dis. 2019;78(2):171-8. doi: 10.1136/annrheumdis-2018-213271

56. Schett G, Emery P, Tanaka Y, et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann Rheum Dis. 2016;75(8):1428-37. doi: 10.1136/annrheumdis-2016-209201

57. Damsky W, King BA. JAK inhibitors in dermatology: The promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736-44. doi: 10.1016/j.jaad.2016.12.005

58. Hosking AM, Juhasz M, Mesinkovska NA. Topical Janus kinase inhibitors: A review of applications in dermatology. J Am Acad Dermatol. 2018;79(3):535-44. doi: 10.1016/j.jaad.2018.04.018

59. Guttman-Yassky E, Krueger JG. Atopic dermatitis and psoriasis: Two different immune diseases or one spectrum? Curr Opin Immunol. 2017;48:68-73. doi: 10.1016/j.coi.2017.08.0

60. Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015;73(3):395-9. doi: 10.1016/j.jaad.2015.06.045

61. Bissonnette R, Papp KA, Poulin Y, et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol. 2016;175(5):902-11. doi: 10.1111/bjd.14871

62. Simakou T, Butcher JP, Reid S, Henriquez FL. Alopecia areata: A multifactorial autoimmune condition. J Autoimmun. 2018 Dec 15. pii: S0896-8411(18)30584-5. doi: 10.1016/j.jaut.2018.12.001

63. Kahn J, Deverapalli SC, Rosmarin D. JAK-STAT signaling pathway inhibition: a role for treatment of various dermatologic diseases. Semin Cutan Med Surg. 2018;37(3):198-208. doi: 10.12788/j.sder.2018.041

64. Kahn JS, Deverapalli SC, Rosmarin DM. JAK-STAT signaling pathway inhibition: a role for treatment of discoid lupus erythematosus and dermatomyositis. Int J Dermatol. 2018;57(8):1007-14. doi: 10.1111/ijd.14064

65. Kim SR, Charos A, Damsky W, et al. Treatment of generalized deep morphea and eosinophilic fasciitis with the Janus kinase inhibitor tofacitinib. JAAD Case Rep. 2018;4(5):443-5. doi: 10.1016/j.jdcr.2017.12.003

66. Damsky W, Thakral D, Emeagwali N, et al. Tofacitinib Treatment and Molecular Analysis of Cutaneous Sarcoidosis. N Engl J Med. 2018;379(26):2540-6. doi: 10.1056/NEJMoa1805958

67. McGonagle D, McDermott MF. A Proposed Classification of the Immunological Diseases. PLoS Med. 2006;3:e297. doi: 10.1371/journal.pmed.0030297

68. Banchereau R, Cepika AM, Banchereau J, Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol. 2017;35:337-70. doi: 10.1146/annurev-immunol-051116-052225

69. Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96-102. doi: 10.1016/j.coi.2017.09.003

70. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814

71. Kö nig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-72. doi: 10.1136/annrheumdis-2016-209841

72. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75-5. doi: 10.1136/annrheumdis-2016-210504

73. Seo J, Kang J-A, Dong In Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):1396-9.e12. doi: 10.1016/j.jaci.2016.10.030

74. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi: 10.1093/rheumatology/kew431

75. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41. doi: 10.1186/s12865-017-0225-9

76. Davison LM, Jorgensen TN. New Treatments for Systemic Lupus Erythematosus on the Horizon: Targeting Plasmacytoid Dendritic Cells to Inhibit Cytokine Production. J Clin Cell Immunol. 2017;8(6). doi: 10.4172/2155-9899.1000534

77. Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2018 Dec 1. doi: 10.1093/rheumatology/key339

78. Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-9. [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9 (In Russ.)]. doi: 10.14412/1995-4484-2017-590-599

79. Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov. 2018;17(6):395-412. doi: 10.1038/nrd.2018.45

80. Taylor PC, Abdul Azeez M, Kiriakidis S. Filgotinib for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs. 2017;26(10):1181-7. doi: 10.1080/13543784.2017.137

81. Mease P, Coates LC, Helliwell PS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:2367-77. doi: 10.1016/S0140-6736(18)32483-8

82. Van der Heijde D, Baraliakos X, Gensler LS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:2378-87. doi: 10.1016/S0140-6736(18)32463-2

83. Serhal L, Edwards CJ. Upadacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2018:15(1):13-25. doi: 10.1080/1744666X.2019.1544892

84. Burmester GR, Kremer JM, van den Bosch F, et al. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391:2503-12. doi: 10.1016/S0140-6736(18)31115-2

85. Genovese MC, Fleischmann R, Combe B, et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet. 2018;391:2513-24. doi: 10.1016/S0140-6736(18)31116-4

86. Schö n MP, Erpenbeck L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis. Front Immunol. 2018 Jun 15;9:1323. doi: 10.3389/fimmu.2018.01323

87. Boutet MA, Nerviani A, Gallo Afflitto G, Pitzalis C. Role of the IL-23/IL-17 Axis in Psoriasis and Psoriatic Arthritis: The Clinical Importance of Its Divergence in Skin and Joints. Int J Mol Sci. 2018;19(2). pii: E530. doi: 10.3390/ijms19020530

88. Macaluso FS, Orlando A, Cottone M. Anti-interleukin-12 and anti-interleukin-23 agents in Crohn's disease. Expert Opin Biol Ther. 2018 Dec 20. doi: 10.1080/14712598.2019.1561850

89. Verstockt B, van Assche G, Vermeire S, Ferrante M. Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease. Expert Opin Biol Ther. 2017;17(1):31-47. doi: 10.1080/14712598.2017.1258399

90. Papp K, Gordon K, Thaci D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018 Oct 4;379(14):1313-21. doi: 10.1056/NEJMoa1806382

91. Fleischmann RM, Damjanov NS, Kivitz AJ, et al. A randomized, double-blind, placebo-controlled, twelve-week, doseranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with active rheumatoid arthritis. Arthritis Rheum. 2015;67(2):334-43. doi: 10.1002/art.38949

92. Genovese MC, van Vollenhoven RF, Pacheco-Tena C, et al. VX-509 (Decernotinib), an Oral Selective JAK-3 Inhibitor, in Combination With Methotrexate in Patients With Rheumatoid Arthritis. Arthritis Rheum. 2016;68(1):46-55. doi: 10.1002/art.39473

93. Genovese MC, Yang F, Ostergaard M, Kinnman N. Efficacy of VX-509 (decernotinib) in combination with a disease-modifying antirheumatic drug in patients with rheumatoid arthritis: clinical and MRI findings. Ann Rheum Dis. 2016 Nov;75(11):1979-83. doi: 10.1136/annrheumdis-2015-208901

94. Zetterberg C, Maltais F, Laitinen L, et al. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions. Drug Metab Dispos. 2016;44(8):1286-95. doi: 10.1124/dmd.116.071100

95. Winthrop KL, Curtis JR, Lindsey S, et al. Herpes Zoster and Tofacitinib: Clinical Outcomes and the Risk of Concomitant Therapy. Arthritis Rheum. 2017;69(10):1960-8. doi: 10.1002/art.40189

96. Robinette ML, Cella M, Telliez JB, et al. Jak3 deficiency blocks innate lymphoid cell development. Mucosal Immunol. 2018;11(1):50-60. doi: 10.1038/mi.2017.38

97. Nurmohamed M, Choy E, Lula S, et al. The Impact of Biologics and Tofacitinib on Cardiovascular Risk Factors and Outcomes in Patients with Rheumatic Disease: A Systematic Literature Review. Drug Saf. 2018;41(5):473-88. doi: 10.1007/s40264-017-0628-9

98. Kremer JM, Kivitz AJ, Simon-Campos JA, et al. Evaluation of the effect of tofacitinib on measured glomerular filtration rate in patients with active rheumatoid arthritis: results from a randomised controlled trial. Arthritis Res Ther. 2015;17:95. doi: 10.1186/s13075-015-0612-7

99. Verden A, Dimbil M, Kyle R, et al. Analysis of Spontaneous Postmarket Case Reports Submitted to the FDA Regarding Thromboembolic Adverse Events and JAK Inhibitors. Drug Saf. 2018;41(4):357-61. doi: 10.1007/s40264-017-0622-2

100. Desai RJ, Pawar A, Weinblatt ME, Kim SC. Comparative risk of venous thromboembolism with tofacitinib versus tumor necrosis factor inhibitors: A cohort study of rheumatoid arthritis patients. Arthritis Rheum. 2018 Dec 15. doi: 10.1002/art.40798

101. Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 2018;30(2):207-14. doi: 10.1097/BOR

102. Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746

103. Conrad C, Di Domizio J, Mylonas A, et al. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat Commun. 2018;9(1):25. doi: 10.1038/s41467-017-02466-4

104. Strand V, Balsa A, Al-Saleh J, et al. Immunogenicity of Biologics in Chronic Inflammatory Diseases: A Systematic Review. BioDrugs. 2017;31(4):299-316. doi: 10.1007/s40259-017-0231-8

105. Blunt MD, Koehrer S, Dobson RC, et al. The Dual Syk/JAK Inhibitor Cerdulatinib Antagonizes B-cell Receptor and Microenvironmental Signaling in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2017;23(9):2313-24. doi: 10.1158/1078-0432.CCR-16-1662

106. Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in Autoimmune Rheumatic Diseases. Front Immunol. 2016;7:78. doi: 10.3389/fimmu.2016.00

107. Menet CJ. A Dual Inhibition, a Better Solution: Development of a JAK1/TYK2 inhibitor. J Med Chem. 2018;61(19):8594-6. doi: 10.1021/acs.jmedchem.8b01397

108. Banfield C, Scaramozza M, Zhang W, et al. The Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of a TYK2/JAK1 Inhibitor (PF-06700841) in Healthy Subjects and Patients With Plaque Psoriasis. J Clin Pharmacol. 2018;58(4):434-47. doi: 10.1002/jcph.1046

109. Barroso NS, Miller EZ, Furst DE. A Case Series on Patients on Tofacitinib in Combination With a Biologic. J Clin Rheumatol. 2018 Sep;24(6):349-51. doi: 10.1097/RHU.0000000000000663


Для цитирования:


Насонов Е.Л., Лила А.М. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. https://doi.org/10.14412/1995-4484-2019-8-16

For citation:


Nasonov E.L., Lila A.M. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Rheumatology Science and Practice. 2019;57(1):8-16. (In Russ.) https://doi.org/10.14412/1995-4484-2019-8-16

Просмотров: 273


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)