Preview

Научно-практическая ревматология

Расширенный поиск

Хроническая боль и центральная сенситизация при иммуновоспалительных ревматических заболеваниях: патогенез, клинические проявления, возможность применения таргетных базисных противовоспалительных препаратов

https://doi.org/10.14412/1995-4484-2019-197-209

Полный текст:

Аннотация

Хроническая боль – одно из основных проявлений иммуновоспалительных ревматических заболеваний (ИВРЗ), таких как ревматоидный артрит (РА) и псориатический артрит (ПсА), определяющее тяжесть страданий, снижение качества жизни и инвалидизацию больных. К сожалению, применение синтетических и биологических базисных противовоспалительных препаратов, а также нестероидных противовоспалительных препаратов не всегда обеспечивает достаточный контроль боли при ИВРЗ, даже в том случае, когда удается добиться существенного снижения воспалительной активности. Причина этого заключается в комплексном механизме развития хронической боли. Он включает не только стимуляцию болевых рецепторов, вызванную поражением элементов скелетно-мышечной системы, но также изменение восприятия боли, связанное с феноменом центральной сенситизации (ЦС). ЦС характеризуется значительным и стойким повышением чувствительности ноцицептивных нейронов к болевым и неболевым стимулам. Одна из основных теорий развития ЦС объясняет этот феномен воспалительной реакцией со стороны окружения нейронов – активацией астроцитов и микроглиальных клеток, локальной гиперпродукцией цитокинов, медиаторов воспаления и нейротрофических факторов. Факторами, способствующими развитию ЦС при ИВРЗ, являются ожирение, депрессия и тревожность, поражение соматосенсорной системы, недостаточное купирование боли в дебюте заболевания. Клиническими проявлениями ЦС при ИВРЗ становятся гипералгезия, аллодиния, «распространенная боль» и вторичная фибромиалгия. Важное значение в развитии хронической боли и ЦС придается внутриклеточному воспалительному пути JAK-STAT. Поэтому ингибиторы JAK, такие как тофацитиниб, используемые в качестве патогенетического средства при РА и ПсА, могут также рассматриваться как эффективное средство контроля хронической боли при этих заболеваниях.

Об авторах

А. Е. Каратеев
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

зав. лабораторией патофизиологии боли и клинического полиморфизма скелетно-мышечных заболеваний, докт. мед. наук

115522, Москва, Каширское шоссе, 34А.



Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

научный руководитель ФГБНУ НИИР им. В.А. Насоновой; зав. кафедрой ревматологии ИПО, академик РАН, профессор, докт. мед. наук 

115522, Москва, Каширское шоссе, 34А;

119991 Москва, ул. Трубецкая, 8, стр. 2.

 



Список литературы

1. Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017. 446 с. ISBN 978-5-9704-4261-6.

2. Лила АМ, Насонов ЕЛ, Коротаева ТВ. Псориатический артрит: патогенетические особенности и инновационные методы терапии. Научно-практическая ревматология. 2018;56(6):685-91. doi: 10.14412/1995-4484-2018-685-691

3. Lee YC. Effect and treatment of chronic pain in inflammatory arthritis. Curr Rheumatol Rep. 2013 Jan;15(1):300. doi: 10.1007/s11926-012-0300-4

4. Borenstein D, Altman R, Bello A, et al. American College of Rheumatology Pain Management Task Force. Report of the American College of Rheumatology Pain Management Task Force. Arthritis Care Res (Hoboken). 2010 May;62(5):590-9. doi: 10.1002/acr.20005

5. Eriksson JK, Johansson K, Askling J, Neovius M. Costs for hospital care, drugs and lost work days in incident and prevalent rheumatoid arthritis: how large, and how are they distributed? Ann Rheum Dis. 2015 Apr;74(4):648-54. doi: 10.1136/annrheumdis-2013-204080. Epub 2013 Dec 9.

6. Huscher D, Mittendorf T, von Hinüber U, et al. Evolution of cost structures in rheumatoid arthritis over the past decade. Ann Rheum Dis. 2015 Apr;74(4):738-45. doi: 10.1136/annrheumdis-2013-204311. Epub 2014 Jan 9.

7. Jobski K, Luque Ramos A, Albrecht K, Hoffmann F. Pain, depressive symptoms and medication in German patients with rheumatoid arthritis – results from the linking patient-reported outcomes with claims data for health services research in rheumatology (PROCLAIR) study. Pharmacoepidemiol Drug Saf. 2017 Jul;26(7):766-74. doi: 10.1002/pds.4202. Epub 2017 Mar 26.

8. Salaffi F, Giacobazzi G, Di Carlo M. Chronic Pain in Inflammatory Arthritis: Mechanisms, Metrology, and Emerging Targets – A Focus on the JAK-STAT Pathway. Pain Res Manag. 2018 Feb 7;2018:8564215. doi: 10.1155/2018/8564215.eCollection 2018.

9. Lee YC, Cui J, Lu B, et al. Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: a longitudinal observational study. Arthritis Res Ther. 2011 Jun 8;13(3):R83. doi: 10.1186/ar3353

10. Ishida M, Kuroiwa Y, Yoshida E, et al. Residual symptoms and disease burden among patients with rheumatoid arthritis in remission or low disease activity: a systematic literature review. Mod Rheumatol. 2018 Sep;28(5):789-99. doi: 10.1080/14397595.2017.1416940. Epub 2018 Jan 11.

11. Kilic G, Kilic E, Nas K, et al. Residual symptoms and disease burden among patients with psoriatic arthritis: is a new disease activity index required? Rheumatol Int. 2019 Jan;39(1):73-81. doi: 10.1007/s00296-018-4201-3. Epub 2018 Nov 13.

12. Van Mens LJJ, van de Sande MGH, van Kuijk MGH, et al. Ideal target for psoriatic arthritis? Comparison of remission and low disease activity states in a real-life cohort. Ann Rheum Dis. 2017;77(2):251-7. doi: 10.1136/annrheumdis-2017-211998

13. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015 Feb 26;160(5):816-27. doi: 10.1016/j.cell.2015.02.010

14. Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci. 2015;131:251-79. doi: 10.1016/bs.pmbts.2014.11.014. Epub 2015 Jan 30.

15. Zhang H, Li F, Li WW, et al. The inflammasome as a target for pain therapy. Br J Anaesth. 2016 Dec;117(6):693-707.

16. Smith-Edwards KM, DeBerry JJ, Saloman JL, et al. Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators. Elife. 2016 Nov 2;5. pii: e20527. doi: 10.7554/eLife.20527

17. Lukacs M, Haanes KA, Majlath Z, et al. Dural administration of inflammatory soup or Complete Freund's Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain. 2015;16:564. doi: 10.1186/s10194-015-0564-y. Epub 2015 Sep 2.

18. Zhang A, Lee YC. Mechanisms for Joint Pain in Rheumatoid Arthritis (RA): from Cytokines to Central Sensitization. Curr Osteoporos Rep. 2018 Oct;16(5):603-10. doi: 10.1007/s11914-018-0473-5

19. Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470. doi: 10.1186/s13075-014-0470-8

20. Gouin O, L'Herondelle K, Lebonvallet N, et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: proinflammatory response induced by their activation and their sensitization. Protein Cell. 2017 Sep;8(9):644-61. doi: 10.1007/s13238-017-0395-5. Epub 2017 Mar 31.

21. Habib AM, Wood JN, Cox JJ. Sodium channels and pain. Handb Exp Pharmacol. 2015;227:39-56. doi: 10.1007/978-3-662-46450-2_3

22. Lahoria R, Pittock SJ, Gadoth A, et al. Clinical-pathologic correlations in voltage-gated Kv1 potassium channel complex-subtyped autoimmune painful polyneuropathy. Muscle Nerve. 2017 Apr;55(4):520-5. doi: 10.1002/mus.25371. Epub 2017 Feb 13.

23. Sekiguchi F, Tsubota M, Kawabata A. Involvement of VoltageGated Calcium Channels in Inflammation and Inflammatory Pain. Biol Pharm Bull. 2018;41(8):1127-34. doi: 10.1248/bpb.b18-00054

24. Hong L, Pathak MM, Kim IH, et al. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains. Neuron. 2013 Jan 23;77(2):274-87. doi: 10.1016/j.neuron.2012.11.013

25. Deval E, Gasull X, Noёl J, et al. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther. 2010 Dec;128(3):549-58. doi: 10.1016/j.pharmthera.2010.08.006. Epub 2010 Aug 31.

26. Gong N, Park J, Luo ZD. Injury-induced maladaptation and dysregulation of calcium channel α2 δsubunit proteins and its contribution to neuropathic pain development. Br J Pharmacol. 2018 Jun;175(12):2231-43. doi: 10.1111/bph.13930. Epub 2017 Aug 1.

27. Palhares MR, Silva JF, Rezende MJS, et al. Synergistic antinociceptive effect of a calcium channel blocker and a TRPV1 blocker in an acute pain model in mice. Life Sci. 2017 Aug 1;182:122-8. doi: 10.1016/j.lfs.2017.06.018. Epub 2017 Jun 16.

28. Richter F, Natura G, Loeser S, et al. Tumor necrosis factor (TNF) causes persistent sensitization of joint nociceptors for mechanical stimuli. Arthritis Rheum. 2010;62:3806-14. doi: 10.1002/art.27715

29. Watkins LR, Wiertelak EP, Goehler LE, et al. Characterization of cytokine-induced hyperalgesia. Brain Res. 1994;654:15-26. doi: 10.1016/0006-8993(94)91566-0

30. Ebbinghaus M, Uhlig B, Richter F, et al. The role of interleukin-1βin arthritic pain: main involvement in thermal but not in mechanical hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 2012;64:3897-907. doi: 10.1002/art.34675

31. Richter F, Natura G, Ebbinghaus M, et al. Interleukin-17 sensitizes joint nociceptors for mechanical stimuli and contributes to arthritic pain through neuronal IL-17 receptors in rodents. Arthritis Rheum. 2012;64:4125-34. doi: 10.1002/art.37695

32. Arendt-Nielsen L, Morlion B, Perrot S, et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur J Pain. 2018 Feb;22(2):216-41. doi: 10.1002/ejp.1140. Epub 2017 Nov 5.

33. Chen G, Zhang YQ, Qadri YJ, et al. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron. 2018 Dec 19;100(6):1292-311. doi: 10.1016/j.neuron.2018.11.009

34. Bianchi M, Martucci C, Ferrario P, et al. Increased Tumor Necrosis Factor- and Prostaglandin E2 Concentrations in the Cerebrospinal Fluid of Rats with Inflammatory Hyperalgesia: The Effects of Analgesic Drugs. Anest Analg. 2007;104:949-54. doi: 10.1213/01.ane.0000258060.89380.27

35. McCrory C, Fitzgerald D. Spinal prostaglandin formation and pain perception following thoracotomy: a role for cyclooxygenase-2. Chest. 2004 Apr;125(4):1321-7. doi: 10.1378/chest.125.4.1321

36. Zhang JC, Yao W, Dong C, et al. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl Psychiatry. 2017 May 30;7(5):e1138. doi: 10.1038/tp.2017.112

37. Wakabayashi H, Kato S, Nagao N, et al. Interleukin-6 Inhibitor Suppresses Hyperalgesia Without Improvement in Osteoporosis in a Mouse Pain Model of Osteoporosis.Calcif Tissue Int. 2019 Jan 21. doi: 10.1007/s00223-019-00521-4 [Epub ahead of print].

38. Vazquez E, Kahlenbach J, Segond von Banchet G, et al. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum. 2012 Jul;64(7):2233-42. doi: 10.1002/art.34384

39. Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008 May 14;28(20):5189-94. doi: 10.1523/JNEUROSCI.3338-07.2008

40. Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002 Jun;200(6):629-38. doi: 10.1046/j.1469-7580.2002.00064.x

41. Eskilsson A, Mirrasekhian E, Dufour S. Immune-induced fever is mediated by IL-6 receptors on brain endothelial cells coupled to STAT3-dependent induction of brain endothelial prostaglandin synthesis. J Neurosci. 2014 Nov 26;34(48):15957-61. doi: 10.1523/JNEUROSCI.3520-14.2014

42. König C, Morch E, Eitner A. Involvement of Spinal IL-6 TransSignaling in the Induction of Hyperexcitability of Deep Dorsal Horn Neurons by Spinal Tumor Necrosis Factor-Alpha. J Neurosci. 2016 Sep 21;36(38):9782-91. doi: 10.1523/JNEUROSCI.4159-15.2016

43. Wilhelms DB, Kirilov M, Mirrasekhian E. Deletion of prostaglandin E2 synthesizing enzymes in brain endothelial cells attenuates inflammatory fever. J Neurosci. 2014 Aug 27;34(35):11684-90. doi: 10.1523/JNEUROSCI.1838-14.2014

44. Garbuzova-Davis S, Ehrhart J, Sanberg PR, Borlongan CV. Potential Role of Humoral IL-6 Cytokine in Mediating ProInflammatory Endothelial Cell Response in Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2018 Jan 31;19(2). pii: E423. doi: 10.3390/ijms19020423

45. Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015 Aug;43(4):702-6. doi: 10.1042/BST20140319. Epub 2015 Aug 3.

46. George MD, Giles JT, Katz PP, et al. Impact of Obesity and Adiposity on Inflammatory Markers in Patients With Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2017 Dec;69(12):1789-98. doi: 10.1002/acr.23229. Epub 2017 Nov 6.

47. Dar L, Tiosano S, Watad A, et al. Are obesity and rheumatoid arthritis interrelated? Int J Clin Pract. 2018 Jan;72(1). doi: 10.1111/ijcp.13045. Epub 2017 Dec 12.

48. Mullen M, Gonzalez-Perez RR. Leptin-Induced JAK/STAT Signaling and Cancer Growth. Vaccines (Basel). 2016 Jul 26;4(3). pii: E26. doi: 10.3390/vaccines4030026

49. Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017 Feb;13(2):100-9. doi: 10.1038/nrrheum.2016.209. Epub 2017 Jan 5.

50. Chang KT, Lin YL, Lin CT, et al. Leptin is essential for microglial activation and neuropathic pain after preganglionic cervical root avulsion. Life Sci. 2017 Oct 15;187:31-41. doi: 10.1016/j.lfs.2017.08.016. Epub 2017 Aug 16.

51. Fatel ECS, Rosa FT, Simao ANC, Dichi I. Adipokines in rheumatoid arthritis. Adv Rheumatol. 2018 Aug 15;58(1):25. doi: 10.1186/s42358-018-0026-8

52. Hozumi J, Sumitani M, Nishizawa D, et al. Resistin Is a Novel Marker for Postoperative Pain Intensity. Anesth Analg. 2018 Apr 11. doi: 10.1213/ANE.0000000000003363 [Epub ahead of print].

53. Bas S, Finckh A, Puskas GJ, et al. Adipokines correlate with pain in lower limb osteoarthritis: different associations in hip and knee. Int Orthop. 2014 Dec;38(12):2577-83. doi: 10.1007/s00264-014-2416-9. Epub 2014 Jul 9.

54. Da Cruz Fernandes IM, Pinto RZ, Ferreira P, Lira FS. Low back pain, obesity, and inflammatory markers: exercise as potential treatment. J Exerc Rehabil. 2018 Apr 26;14(2):168-74. doi: 10.12965/jer.1836070.035. eCollection 2018 Apr.

55. Gonzalez FJ, Xie C, Jiang C. The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol. 2018 Dec;15(1):21-32. doi: 10.1038/s41574-018-0096-z

56. Agarwal V, Singh R, Wiclaf, et al. A clinical, electrophysiological, and pathological study of neuropathy in rheumatoid arthritis. Clin Rheumatol. 2008 Jul;27(7):841-4. doi: 10.1007/s10067-007-0804-x. Epub 2007 Dec 15.

57. Karaca Umay E, Gurcay E, Karsli PB, Cakci A. Sensory disturbance and polyneuropathy in rheumatoid arthritis patients with foot deformity. Rev Bras Reumatol Engl Ed. 2016 MayJun;56(3):191-7. doi: 10.1016/j.rbre.2015.08.010. Epub 2015 Sep 8.

58. Sim MK, Kim DY, Yoon J, et al. Assessment of peripheral neuropathy in patients with rheumatoid arthritis who complain of neurologic symptoms. Ann Rehabil Med. 2014 Apr;38(2):249-55. doi: 10.5535/arm.2014.38.2.249. Epub 2014 Apr 29.

59. Филатова ЕС, Эрдес ШФ. Полиневропатия при ревматоидном артрите: значение в патогенезе болевого синдрома. Русский медицинский журнал. 2017;(7):470-3.

60. Narayanaswami P, Chapman KM, Yang ML, Rutkove SB. Psoriatic arthritis-associated polyneuropathy: a report of three cases. J Clin Neuromuscul Dis. 2007 Sep;9(1):248-51. doi: 10.1097/CND.0b013e31814839d6

61. Vladimirova N, Jespersen A, Bartels EM, et al. Pain Sensitisation in Women with Active Rheumatoid Arthritis: A Comparative Cross-Sectional Study. Arthritis. 2015;2015:434109. doi: 10.1155/2015/434109. Epub 2015 Jul 21.

62. Wang D, Couture R, Hong Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol. 2014 Apr 5;728:59-66. doi: 10.1016/j.ejphar.2014.01.057. Epub 2014 Feb 6.

63. Greig M, Tesfaye S, Selvarajah D, Wilkinson ID. Insights into the pathogenesis and treatment of painful diabetic neuropathy. Handb Clin Neurol. 2014;126:559-78. doi: 10.1016/B978-0-444-53480-4.00037-0

64. Harth M, Nielson WR. Pain and affective distress in arthritis: relationship to immunity and inflammation. Expert Rev Clin Immunol. 2019 Jan 23. doi: 10.1080/1744666X.2019.1573675 [Epub ahead of print].

65. Luque Ramos A, Redeker I, Hoffmann F, et al. Comorbidities in Patients with Rheumatoid Arthritis and Their Association with Patient-reported Outcomes: Results of Claims Data Linked to Questionnaire Survey. J Rheumatol. 2019 Jan 15. pii: jrheum.180668. doi: 10.3899/jrheum.180668 [Epub ahead of print].

66. Husni ME. Comorbidities in Psoriatic Arthritis. Rheum Dis Clin North Am. 2015 Nov;41(4):677-98. doi: 10.1016/j.rdc.2015.07.008. Epub 2015 Sep 5.

67. Лисицына ТА, Вельтищев ДЮ. Психические расстройства у больных ревматическими заболеваниями: диагностика и лечение. Научно-практическая ревматология. 2015;53(5):512-21. doi: 10.14412/1995-4484-2015-512-521

68. Liberman AC, Trias E, da Silva Chagas L, et al. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation. 2018 Dec 5:1-25. doi: 10.1159/000494761 [Epub ahead of print].

69. Kohler O, Krogh J, Mors O, Benros ME. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr Neuropharmacol. 2016;14(7):732-42. doi: 10.2174/1570159X14666151208113700

70. Maes M, Anderson G, Kubera M, Berk M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets. 2014 May;18(5):495-512. doi: 10.1517/14728222.2014.888417. Epub 2014 Feb 19.

71. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013 Sep 25;150(3):736-44. doi: 10.1016/j.jad.2013.06.004. Epub 2013 Jul 17.

72. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009 Feb;71(2):171-86. doi: 10.1097/PSY.0b013e3181907c1b. Epub 2009 Feb 2.

73. Steyaert A, Lavand'homme P Prevention and Treatment of Chronic Postsurgical Pain: A Narrative Review. Drugs. 2018 Mar;78(3):339-54. doi: 10.1007/s40265-018-0866-x

74. Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res. 2017 Sep 25;10:2287-98. doi: 10.2147/JPR.S144066. eCollection 2017.

75. Clark J, Nijs J, Yeowell G, Goodwin PC. What Are the Predictors of Altered Central Pain Modulation in Chronic Musculoskeletal Pain Populations? A Systematic Review. Pain Physician. 2017 Sep;20(6):487-500.

76. Martins Rocha T, Pimenta S, Bernardo A, et al. Determinants of non-nociceptive pain in Rheumatoid Arthritis. Acta Reumatol Port. 2018 Oct-Dec;43(4):291-303.

77. Rifbjerg-Madsen S, Christensen AW, Christensen R, et al. Pain and pain mechanisms in patients with inflammatory arthritis: A Danish nationwide cross-sectional DANBIO registry survey. PLoS One. 2017 Jul 7;12(7):e0180014. doi: 10.1371/journal.pone.0180014. eCollection 2017.

78. Lee YC, Bingham CO 3rd, Edwards RR, et al. Association Between Pain Sensitization and Disease Activity in Patients With Rheumatoid Arthritis: A Cross-Sectional Study. Arthritis Care Res (Hoboken). 2018 Feb;70(2):197-204. doi: 10.1002/acr.23266

79. Andersson ML, Svensson B, Bergman S. Chronic widespread pain in patients with rheumatoid arthritis and the relation between pain and disease activity measures over the first 5 years. J Rheumatol. 2013 Dec;40(12):1977-85. doi: 10.3899/jrheum.130493. Epub 2013 Nov 1.

80. Bilberg A, Bremell T, Bjersing J, Mannerkorpi K. High prevalence of widespread pain in women with early rheumatoid arthritis. Scand J Rheumatol. 2018 Nov;47(6):447-54. doi: 10.1080/03009742.2018.1447683. Epub 2018 Jul 5.

81. Kapoor SR, Hider SL, Brownfield A. Fibromyalgia in patients with rheumatoid arthritis: driven by depression or joint damage? Clin Exp Rheumatol. 2011 Nov-Dec;29(6 Suppl 69):S88-91. Epub 2012 Jan 3.

82. Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014 Apr 16;311(15):1547-55. doi: 10.1001/jama.2014.3266

83. Dougados M, Perrot S. Fibromyalgia and central sensitization in chronic inflammatory joint diseases. Joint Bone Spine. 2017 Oct;84(5):511-3. doi: 10.1016/j.jbspin.2017.03.001. Epub 2017 Mar 12.

84. Macfarlane GJ, Kronisch C, Dean LE, et al. EULAR revised recommendations for the management of fibromyalgia. Ann Rheum Dis. 2017 Feb;76(2):318-28. doi: 10.1136/annrheumdis-2016-209724. Epub 2016 Jul 4.

85. Provan SA, Austad C, Halsaa V, et al. Fibromyalgia in patients with rheumatoid arthritis. A 10-year follow-up study, results from the Oslo Rheumatoid Arthritis Register. Clin Exp Rheumatol. 2019 Jan 8 [Epub ahead of print].

86. Shah K, Paris M, Mellars L, et al. Real-world burden of comorbidities in US patients with psoriatic arthritis. RMD Open.2017 Dec 28;3(2):e000588. doi: 10.1136/rmdopen-2017-000588. eCollection 2017.

87. Marchesoni A, De Marco G, Merashli M, et al. The problem in differentiation between psoriatic-related polyenthesitis and fibromyalgia. Rheumatology (Oxford).2018 Jan 1;57(1):32-40. doi: 10.1093/rheumatology/kex079

88. Lee YC, Lu B, Boire G, et al. Incidence and predictors of secondary fibromyalgia in an early arthritis cohort. Ann Rheum Dis. 2013 Jun;72(6):949-54. doi: 10.1136/annrheumdis-2012-201506. Epub 2012 Jul 11.

89. Salaffi F, Gerardi MC, Atzeni F, et al. The influence of fibromyalgia on achieving remission in patients with long-standing rheumatoid arthritis. Rheumatol Int. 2017 Dec;37(12):2035-42. doi: 10.1007/s00296-017-3792-4. Epub 2017 Sep 5.

90. Lage-Hansen PR, Chrysidis S, Lage-Hansen M, et al. Concomitant fibromyalgia in rheumatoid arthritis is associated with the more frequent use of biological therapy: a cross-sectional study. Scand J Rheumatol. 2016 Jan;45(1):45-8. doi: 10.3109/03009742.2015.1046484. Epub 2015 Jul 16.

91. Silverman S, Dukes EM, Johnston SS, et al. The economic burden of fibromyalgia: comparative analysis with rheumatoid arthritis. Curr Med Res Opin. 2009 Apr;25(4):829-40. doi: 10.1185/03007990902728456

92. Fuggle NR, Howe FA, Allen RL, et al. New insights into the impact of neuro-inflammation in rheumatoid arthritis. Front Neurosci. 2014 Nov 6;8:357. doi: 10.3389/fnins.2014.00357. eCollection 2014.

93. Jones AK, Huneke NT, Lloyd DM, et al. Role of functional brain imaging in understanding rheumatic pain. Curr Rheumatol Rep. 2012 Dec;14(6):557-67. doi: 10.1007/s11926-012-0287-x

94. Burgmer M, Pogatzki-Zahn E, Gaubitz M, et al. Fibromyalgia unique temporal brain activation during experimental pain: a controlled fMRI Study. J Neural Transm (Vienna). 2010 Jan;117(1):123-31. doi: 10.1007/s00702-009-0339-1. Epub 2009 Nov 25.

95. Eisenberger NI, Inagaki TK, Rameson LT, et al. An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage. 2009 Sep;47(3):881-90. doi: 10.1016/j.neuroimage.2009.04.040. Epub 2009 Apr 17.

96. Schrepf A, Kaplan CM, Ichesco E, et al. A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis. Nat Commun. 2018 Jun 8;9(1):2243. doi: 10.1038/s41467-018-04648-0

97. Wartolowska K, Hough MG, Jenkinson M, et al. Structural changes of the brain in rheumatoid arthritis. Arthritis Rheum. 2012 Feb;64(2):371-9. doi: 10.1002/art.33326

98. Насонов ЕЛ. Прогресс ревматологии в начале XXI века. Современная ревматология. 2014;8(3):4-8. doi: 10.14412/1996-7012-2014-3-4-8

99. Насонов ЕЛ, редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва: ИМА-ПРЕСС; 2013. 549 с.

100. Her M, Kavanaugh A. Patient-reported outcomes in rheumatoid arthritis. Curr Opin Rheumatol. 2012 May;24(3):327-34. doi: 10.1097/BOR.0b013e3283521c64

101. Rendas-Baum R, Bayliss M, Kosinski M, et al. Measuring the effect of therapy in rheumatoid arthritis clinical trials from the patient's perspective.Curr Med Res Opin. 2014 Jul;30(7):1391-403. doi: 10.1185/03007995.2014.896328. Epub 2014 Apr 9.

102. Jansen JP, Buckley F, Dejonckheere F, Ogale S. Comparative efficacy of biologics as monotherapy and in combination with methotrexate on patient reported outcomes (PROs) in rheuma-toid arthritis patients with an inadequate response to conventional DMARDs – a systematic review and network meta-analysis. Health Qual Life Outcomes. 2014 Jul 3;12:102. doi: 10.1186/1477-7525-12-102

103. Srirangan S, Choy EH. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2010 Oct;2(5):247-56. doi: 10.1177/1759720X10378372

104. Smolen JS, Aletaha D. Interleukin-6 receptor inhibition with tocilizumab and attainment of disease remission in rheumatoid arthritis: the role of acute-phase reactants. Arthritis Rheum. 2011 Jan;63(1):43-52. doi: 10.1002/art.27740

105. Teitsma XM, Marijnissen AK, Bijlsma JW, et al. Tocilizumab as monotherapy or combination therapy for treating active rheumatoid arthritis: a meta-analysis of efficacy and safety reported in randomized controlled trials. Arthritis Res Ther. 2016 Sep 22;18(1):211. doi: 10.1186/s13075-016-1108-9

106. Navarro G, Taroumian S, Barroso N, et al. Tocilizumab in rheumatoid arthritis: a meta-analysis of efficacy and selected clinical conundrums. Semin Arthritis Rheum. 2014 Feb;43(4):458-69. doi: 10.1016/j.semarthrit.2013.08.001. Epub 2013 Nov 18.

107. Strand V, Burmester GR, Ogale S, et al. Improvements in healthrelated quality of life after treatment with tocilizumab in patients with rheumatoid arthritis refractory to tumour necrosis factor inhibitors: results from the 24-week randomized controlled RADIATE study. Rheumatology (Oxford). 2012 Oct;51(10):1860-9. Epub 2012 Jun 28.

108. Yazici Y, Curtis JR, Ince A, et al. Efficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: the ROSE study. Ann Rheum Dis. 2012 Feb;71(2):198-205. doi: 10.1136/ard.2010.148700. Epub 2011 Sep 26.

109. Панасюк ЕЮ, Амирджанова ВН, Авдеева АС и др. Опыт применения тоцилизумаба у больных ревматоидным артритом (по данным многоцентрового исследования ЛОРНЕТ). Научно-практическая ревматология. 2013;51(2):104-10. doi: 10.14412/1995-4484-2013-635

110. Панасюк ЕЮ, Амирджанова ВН, Александрова ЕН и др. Быстрый эффект тоцилизумаба при ревматоидном артрите. Научно-практическая ревматология. 2011;49(4):11-6. doi: 10.14412/1995-4484-2011-55

111. Choy EH, Bernasconi C, Aassi M, et al. Treatment of Rheumatoid Arthritis With Anti-Tumor Necrosis Factor or Tocilizumab Therapy as First Biologic Agent in a Global Comparative Observational Study. Arthritis Care Res (Hoboken). 2017 Oct;69(10):1484-94. doi: 10.1002/acr.23303. Epub 2017 Sep 6.

112. Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-21. doi: 10.14412/1995-4484-2014-209-221

113. Yan Z, Gibson SA, Buckley JA, et al. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 2018 Apr;189:4-13. doi: 10.1016/j.clim.2016.09.014. Epub 2016 Oct 3.

114. Banerjee S, Biehl A, Gadina M, et al. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs. 2017 Apr;77(5):521-46. doi: 10.1007/s40265-017-0701-9

115. Liu Y, Gibson SA, Benveniste EN, Qin H. Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in Neuroinflammatory Diseases. Crit Rev Immunol. 2015;35(6):505-27. doi: 10.1615/CritRevImmunol.2016015517

116. Tsuda M, Kohro Y, Yano T, et al. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain. 2011 Apr;134(Pt 4):1127-39. doi: 10.1093/brain/awr025. Epub 2011 Mar 2.

117. Dominguez E, Rivat C, Pommier B, et al. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem. 2008 Oct;107(1):50-60. doi: 10.1111/j.1471-4159.2008.05566.x. Epub 2008 Jul 12.

118. Ding CP, Guo YJ, Li HN, et al. Red nucleus interleukin-6 participates in the maintenance of neuropathic pain through JAK/STAT3 and ERK signaling pathways. Exp Neurol. 2018 Feb;300:212-21. doi: 10.1016/j.expneurol.2017.11.012. Epub 2017 Nov 26.

119. Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015 Jun;34:75-82. doi: 10.1016/j.coi.2015.02.008. Epub 2015 Mar 6.

120. Kojima H, Inoue T, Kunimoto H, Nakajima K. IL-6-STAT3 signaling and premature senescence. JAKSTAT. 2013 Oct 1;2(4):e25763. doi: 10.4161/jkst.25763. Epub 2013 Jul 22.

121. Malemud CJ. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2018 Jun;10(5-6):117-27. doi: 10.1177/1759720X18776224. Epub 2018 May 19.

122. Singh JA, Hossain A, Tanjong Ghogomu E, et al. Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2016 May 13;(5):CD012183. doi: 10.1002/14651858.CD012183

123. Bergrath E, Gerber RA, Gruben D, et al. Tofacitinib versus Biologic Treatments in Moderate-to-Severe Rheumatoid Arthritis Patients Who Have Had an Inadequate Response to Nonbiologic DMARDs: Systematic Literature Review and Network MetaAnalysis.Int J Rheumatol. 2017;2017:8417249. doi: 10.1155/2017/8417249. Epub 2017 Mar 9.

124. Zhang X, Liang F, Yin X, et al. Tofacitinib for acute rheumatoid arthritis patients who have had an inadequate response to diseasemodifying antirheumatic drug (DMARD): a systematic review and meta-analysis. Clin Rheumatol. 2014 Feb;33(2):165-73. doi: 10.1007/s10067-013-2452-7. Epub 2014 Jan 4.

125. Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis. 2017 Jul;76(7):1253-62. doi: 10.1136/annrheumdis-2016-210457. Epub 2017 Jan 31.

126. Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for Psoriatic Arthritis in Patients with an Inadequate Response to TNF Inhibitors. N Engl J Med. 2017 Oct 19;377(16):1525-36. doi: 10.1056/NEJMoa1615977

127. Wang TS, Tsai TF. Tofacitinib in psoriatic arthritis. Immunotherapy. 2017 Nov;9(14):1153-63. doi: 10.2217/imt-2017-0087. Epub 2017 Oct 2.

128. Boyce EG, Vyas D, Rogan EL, et al. Impact of tofacitinib on patient outcomes in rheumatoid arthritis – review of clinical studies. Patient Relat Outcome Meas. 2016 Jan 14;7:1-12. doi: 10.2147/PROM.S62879. eCollection 2016.

129. Wallenstein GV, Kanik KS, Wilkinson B, et al. Effects of the oral Janus kinase inhibitor tofacitinib on patient-reported outcomes in patients with active rheumatoid arthritis: results of two Phase 2 randomised controlled trials. Clin Exp Rheumatol. 2016 MayJun;34(3):430-42. Epub 2016 Apr 28.

130. Kremer JM, Bloom BJ, Breedveld FC, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: Results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009 Jul;60(7):1895-905. doi: 10.1002/art.24567


Для цитирования:


Каратеев А.Е., Насонов Е.Л. Хроническая боль и центральная сенситизация при иммуновоспалительных ревматических заболеваниях: патогенез, клинические проявления, возможность применения таргетных базисных противовоспалительных препаратов. Научно-практическая ревматология. 2019;57(2):197-209. https://doi.org/10.14412/1995-4484-2019-197-209

For citation:


Karateev A.E., Nasonov E.L. Chronic pain and central sensitization in immuno-inflammatory rheumatic diseases: pathogenesis, clinical manifestations, the possibility of using targeted disease modifying antirheumatic drugs. Rheumatology Science and Practice. 2019;57(2):197-209. (In Russ.) https://doi.org/10.14412/1995-4484-2019-197-209

Просмотров: 182


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)